ترغب بنشر مسار تعليمي؟ اضغط هنا

Broadly tunable photon pair generation in a suspended-core fiber

115   0   0.0 ( 0 )
 نشر من قبل Jonas Hammer
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Nowadays fiber biphoton sources are nearly as popular as crystal-based ones. They offer a single spatial mode and easy integrability into optical networks. However, fiber sources lack the broad tunability of crystals, which do not require a tunable pump. Here, we report a broadly tunable biphoton source based on a suspended core fiber. This is achieved by introducing pressurized gas into the fibers hollow channels, changing the step index. The mechanism circumvents the need for a tunable pump laser, making this a broadly tunable fiber biphoton source with a convenient tuning mechanism, comparable to crystals. We report a continuous shift of 0.30THz/bar of the sidebands, using up to 25bar of argon.



قيم البحث

اقرأ أيضاً

Photon sources are fundamental components for any quantum photonic technology. The ability to generate high count-rate and low-noise correlated photon pairs via spontaneous parametric down-conversion using bulk crystals has been the cornerstone of mo dern quantum optics. However, future practical quantum technologies will require a scalable integration approach, and waveguide-based photon sources with high-count rate and low-noise characteristics will be an essential part of chip-based quantum technologies. Here, we demonstrate photon pair generation through spontaneous four-wave mixing in a silicon micro-ring resonator, reporting a maximum coincidence-to-accidental (CAR) ratio of 602 (+-) 37, and a maximum photon pair generation rate of 123 MHz (+-) 11 KHz. To overcome free-carrier related performance degradations we have investigated reverse biased p-i-n structures, demonstrating an improvement in the pair generation rate by a factor of up to 2, with negligible impact on CAR.
We show that two-photon absorption (TPA) in Rubidium atoms can be greatly enhanced by the use of a hollow-core photonic bandgap fiber. We investigate off-resonant, degenerate Doppler-free TPA on the 5S1/2 - 5D5/2 transition and observe 1% absorption of a pump beam with a total power of only 1 mW in the fiber. These results are verified by measuring the amount of emitted blue fluorescence and are consistent with the theoretical predictions which indicate that transit time effects play an important role in determining the two-photon absorption cross-section in a confined geometry.
We evaluate the nonlinear coefficient of graphene-on-silicon waveguides through the coincidence measurement of photon-pairs generated via spontaneous four-wave mixing. We observed the temporal correlation of the photon-pairs from the waveguides over various transfer layouts of graphene sheets. A simple analysis of the experimental results using coupled-wave equations revealed that the atomically-thin graphene sheets enhanced the nonlinearity of silicon waveguides up to ten-fold. The results indicate that the purely $chi^{(3)}$-based effective nonlinear refractive index of graphene is on the order of $10^{-13}$ m$^2$/W, and provide important insights for applications of graphene-based nonlinear optics in on-chip nanophotonics.
The 1-10 terahertz (THz) spectral window is emerging as a key region for plenty of applications, requiring not yet available continuous-wave room-temperature THz spectrometers with high spectral purity and ultra-broad tunability. In this regard, the spectral features of stabilized telecom sources can actually be transferred to the THz range by difference frequency generation, considering that the width of the accessible THz spectrum generally scales with the area involved in the nonlinear interaction. For this reason, in this paper we extensively discuss the role of Lithium Niobate (LN) channel waveguides in the experimental accomplishment of a room-temperature continuous wave (CW) spectrometer, with uW-range power levels and a spectral coverage of up to 7.5 THz.To this purpose, and looking for further improvements, a thought characterization of specially-designed LN waveguides is presented, whilst discussing its nonlinear efficiency and its unprecedented capability to handle high optical power (10 7 W/cm 2 ), on the basis of a three-wave-mixing theoretical model.
84 - S.-W. Huang , H. Liu , J. Yang 2016
High-Q microresonator has been suggested a promising platform for optical frequency comb generation, via dissipative soliton formation. To achieve a higher Q and obtain the necessary anomalous dispersion, $Si_3N_4$ microresonators made of multi-mode waveguides were previously implemented. However, coupling between different transverse mode families in the multi-mode waveguides results in periodic disruption of dispersion and quality factor, introducing perturbation to dissipative soliton formation and amplitude modulation to the corresponding spectrum. Careful choice of pump wavelength to avoid the mode crossing region is thus critical in conventional $Si_3N_4$ microresonators. Here, we report a novel design of $Si_3N_4$ microresonator such that single mode operation, high quality factor, and anomalous dispersion are attained simultaneously. The microresonator is consisted of uniform single mode waveguides in the semi-circle region, to eliminate bending induced mode coupling, and adiabatically tapered waveguides in the straight region, to avoid excitation of higher order modes. The intrinsic Q of the microresonator reaches $1.36 times 10^6$ while the GVD remains to be anomalous at $-50 fs^2/mm$. We demonstrate, with this novel microresonator, broadband phase-locked Kerr frequency combs with flat and smooth spectra can be generated by pumping at any resonances in the optical C-band.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا