ﻻ يوجد ملخص باللغة العربية
Nanoscale defects in superconductors play a dominant role in enhancing superconducting properties through electron scattering, modulation of coherence length, and correlation with quantized magnetic flux. For iron-based superconductors (IBSCs) that are expected to be employed in high-field magnetic applications, a fundamental question is whether such defects develop an upper critical field (Hc2) similar to that of conventional BCS-type superconductors. Herein, we report the first demonstration of a significantly improved Hc2 in a 122-phase IBSC by introducing defects through high-energy milling. Co-doped Ba122 polycrystalline bulk samples (Ba(Fe,Co)2As2) were prepared by sintering powder which was partially mechanically alloyed through high-energy milling. A remarkable increase in full-width at half maximum of X-ray powder diffraction peaks, anomalous shrinkage in the a-axis, and elongation in the c-axis were observed. When lattice defects are introduced into the grains, semiconductor behavior of the electric resistivity at low temperature (T < 100 K), slight decrease in transition temperature (Tc), upturn of Hc2(T) near Tc, and a large increase in Hc2(T) slope were observed. The slope of Hc2(T) increased approximately by 50%, i.e., from 4 to 6 T/K, and exceeded that of single crystals and thin films. Defect engineering through high-energy milling is expected to facilitate new methods for the designing and tuning of Hc2 in 122-phase IBSCs.
We measure magnetotransport of F doped SmFeAsO samples up to 28T and we extract the upper critical fields, using different criteria. In order to circumvent the problem of criterion-dependence Hc2 values, we suggest a thermodynamic estimation of the u
The transition temperature Tc of cuprate superconductors falls when the doping p is reduced below a certain optimal value. It is unclear whether this fall is due to strong phase fluctuations or to a decrease in the pairing gap. Different interpretati
We report large enhancement of upper critical field Hc2 observed in superconducting Sr2RuO4 thin films. Through dimensional crossover approaching two dimensions, Hc2 except the in-plane field direction is dramatically enhanced compared to bulks, foll
A fundamental issue concerning iron-based superconductivity is the roles of electronic nematicity and magnetism in realising high transition temperature ($T_{rm c}$). To address this issue, FeSe is a key material, as it exhibits a unique pressure pha
We present the first study of codoped iron-arsenide superconductors of the 122 family (Sr/Ba)_(1-x)K_xFe_(2-y)Co_yAs_2 with the purpose to increase the upper critical field H_c2 compared to single doped (Sr/Ba)Fe_2As_2 materials. H_c2 was investigate