ترغب بنشر مسار تعليمي؟ اضغط هنا

First characterization of Swift J1845.7-0037 with NuSTAR

54   0   0.0 ( 0 )
 نشر من قبل Victor Doroshenko
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The hard X-ray transient source Swift J1845.7-0037 was discovered in 2012 by Swift/BAT. However, at that time no dedicated observations of the source were performed. On Oct 2019 the source became active again, and X-ray pulsations with a period of ~199s were detected with Swift/XRT. This triggered follow-up observations with NuSTAR. Here we report on the timing and spectral analysis of the source properties using NuSTAR and Swift/XRT. The main goal was to confirm pulsations and search for possible cyclotron lines in the broadband spectrum of the source to probe its magnetic field. Despite highly significant pulsations with period of 207.379(2) were detected, no evidence for a cyclotron line was found in the spectrum of the source. We therefore discuss the strength of the magnetic field based on the source flux and the detection of the transition to the cold-disc accretion regime during the 2012 outburst. Our conclusion is that, most likely, the source is a highly magnetized neutron star with B 1e13G at a large distance of d~10 kpc. The latter one consistent with the non-detection of a cyclotron line in the NuSTAR energy band.



قيم البحث

اقرأ أيضاً

Aims: Spectral and temporal analysis of the NuSTAR observation Galactic Be-XRB Swift J1845.7-0037. during its recent outburst. Methods: For the spectral analysis we use both phenomenological and physics-based models. We employ an often used empirical model to identify the main characteristics of the spectral shape in relation to nominal spectral characteristics of X-ray pulsars. Additionally, we used the latest version of Bulk & Thermal comptonization model (BW), to assess the validity of the spectral components required by the empirical model and to investigate the origin of the hard X-ray emission. We also analyzed the source light-curve, studying the pulse shape at different energy ranges and tracking the spectral evolution with pulse phase by using the model independent hardness ratio (HR). Results: We find that while both the empirical and physical (BW) spectral models can produce good spectral fits, the BW model returns physically plausible best-fit values for the source parameters and does not require any additional spectral components to the non-thermal, accretion column emission. The BW model also yielded an estimation of the neutron star magnetic field placing it in the 10^12G range. Conclusions: Our results, show that the spectral and temporal characteristics of the source emission are consistent with the scattering processes expected for radiation dominated shocks within the accretion column of highly magnetized accreting neutron stars. We further indicate that physically-derived spectral models such as BW, can be used to tentatively infer fundamental source parameters, in the absence of more direct observational signatures.
We have discovered heavy obscuration in the dual active galactic nucleus (AGN) in the Swift/Burst Alert Telescope (BAT) source SWIFT J2028.5+2543 using Nuclear Spectroscopic Telescope Array (NuSTAR). While an early XMM-Newton study suggested the emis sion was mainly from NGC 6921, the superior spatial resolution of NuSTAR above 10 keV resolves the Swift/BAT emission into two sources associated with the nearby galaxies MCG +04-48-002 and NGC 6921 (z = 0.014) with a projected separation of 25.3 kpc (91). NuSTARs sensitivity above 10 keV finds both are heavily obscured to Compton-thick levels (N H=(1-2)x10^24 cm-2) and contribute equally to the BAT detection ({L}10-50 {keV}{{int}}= 6x10^42 erg s-1). The observed luminosity of both sources is severely diminished in the 2-10 keV band, illustrating the importance of >10 keV surveys like those with NuSTAR and Swift/BAT. Compared to archival X-ray data, MCG +04-48-002 shows significant variability (>3) between observations. Despite being bright X-ray AGNs, they are difficult to detect using optical emission-line diagnostics because MCG +04-48-002 is identified as a starburst/composite because of the high rates of star formation from a luminous infrared galaxy while NGC 6921 is only classified as a LINER using line detection limits. SWIFT J2028.5+2543 is the first dual AGN resolved above 10 keV and is the second most heavily obscured dual AGN discovered to date in the X-rays other than NGC 6240.
We fit spectra of galactic transient source GX~339-4 during its 2013 outburst using Two Component Advective Flow (TCAF) solution. For the first time, we are fitting combined NuSTAR and Swift observation with TCAF. We use TCAF to fit 0.8-9.0~keV Swift and 4-79 keV NuSTAR spectra along with the LAOR model. To fit the data we use disk accretion rate, halo accretion rate, size of the Compton cloud and the density jump of advective flows at this cloud boundary as model parameters. From TCAF fitted flow parameters, and energy spectral index we conclude that the source was in the hard state throughout this particular outburst. The present analysis also gives some idea about the broadening of Fe $K_{alpha}$ with the accretion rate. Since TCAF does not include Fe line yet, we make use of the `LAOR model as a phenomenological model and find an estimate of the Kerr parameter to be $sim 0.99$ for this candidate.
With the first direct detection of merging black holes in 2015, the era of gravitational wave (GW) astrophysics began. A complete picture of compact object mergers, however, requires the detection of an electromagnetic (EM) counterpart. We report ult raviolet (UV) and X-ray observations by Swift and the Nuclear Spectroscopic Telescope ARray (NuSTAR) of the EM counterpart of the binary neutron star merger GW170817. The bright, rapidly fading ultraviolet emission indicates a high mass ($approx0.03$ solar masses) wind-driven outflow with moderate electron fraction ($Y_{e}approx0.27$). Combined with the X-ray limits, we favor an observer viewing angle of $approx 30^{circ}$ away from the orbital rotation axis, which avoids both obscuration from the heaviest elements in the orbital plane and a direct view of any ultra-relativistic, highly collimated ejecta (a gamma-ray burst afterglow).
We report on a new NuSTAR observation and on the ongoing Swift XRT monitoring campaign of the peculiar source 1E 161348-5055, located at the centre of the supernova remnant RCW 103, which is recovering from its last outburst in June 2016. The X-ray s pectrum at the epoch of the NuSTAR observation can be described by either two absorbed blackbodies ($kT_{BB_1}$ ~ 0.5 keV, $kT_{BB_2}$ ~ 1.2 keV) or an absorbed blackbody plus a power law ($kT_{BB_1}$ ~ 0.6 keV, $Gamma$ ~ 3.9). The observed flux was ~ 9 $times$ 10$^{-12}$ erg s$^{-1}$ cm$^{-2}$, ~ 3 times lower than what observed at the outburst onset, but about one order of magnitude higher than the historical quiescent level. A periodic modulation was detected at the known 6.67 hr periodicity. The spectral decomposition and evolution along the outburst decay are consistent with 1E 161348-5055 being a magnetar, the slowest ever detected.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا