ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-year Cosmology Large Angular Scale Surveyor (CLASS) Observations: A First Detection of Atmospheric Circular Polarization at Q Band

116   0   0.0 ( 0 )
 نشر من قبل Matthew Petroff
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Earths magnetic field induces Zeeman splitting of the magnetic dipole transitions of molecular oxygen in the atmosphere, which produces polarized emission in the millimeter-wave regime. This polarized emission is primarily circularly polarized and manifests as a foreground with a dipole-shaped sky pattern for polarization-sensitive ground-based cosmic microwave background experiments, such as the Cosmology Large Angular Scale Surveyor (CLASS), which is capable of measuring large angular scale circular polarization. Using atmospheric emission theory and radiative transfer formalisms, we model the expected amplitude and spatial distribution of this signal and evaluate the model for the CLASS observing site in the Atacama Desert of northern Chile. Then, using two years of observations at 32.3 GHz to 43.7 GHz from the CLASS Q-band telescope, we present a detection of this signal and compare the observed signal to that predicted by the model. We recover an angle between magnetic north and true north of $(-5.5 pm 0.6)^circ$, which is consistent with the expectation of $-5.9^circ$ for the CLASS observing site. When comparing dipole sky patterns fit to both simulated and data-derived sky maps, the dipole directions match to within a degree, and the measured amplitudes match to within ${sim}20%$.

قيم البحث

اقرأ أيضاً

We report circular polarization measurements from the first two years of observation with the 40 GHz polarimeter of the Cosmology Large Angular Scale Surveyor (CLASS). CLASS is conducting a multi-frequency survey covering 75% of the sky from the Atac ama Desert designed to measure the cosmic microwave background (CMB) linear E and B polarization on angular scales $1^circ lesssim theta leq 90^circ$, corresponding to a multipole range of $2 leq ell lesssim 200$. The modulation technology enabling measurements of linear polarization at the largest angular scales from the ground, the Variable-delay Polarization Modulator, is uniquely designed to provide explicit sensitivity to circular polarization (Stokes $V$). We present a first detection of circularly polarized atmospheric emission at 40 GHz that is well described by a dipole with an amplitude of $124pm4,mathrm{mu K}$ when observed at an elevation of $45^circ$, and discuss its potential impact as a foreground to CMB experiments. Filtering the atmospheric component, CLASS places a 95% C.L. upper limit of $0.4,mathrm{mu K}^2$ to $13.5,mathrm{mu K}^2$ on $ell(ell+1)C_ell^{VV}/(2pi)$ between $1 leq ell leq 120$, representing a two-orders-of-magnitude improvement over previous limits.
The Cosmology Large Angular Scale Surveyor (CLASS) is a telescope array that observes the cosmic microwave background (CMB) over 75% of the sky from the Atacama Desert, Chile, at frequency bands centered near 40, 90, 150, and 220 GHz. CLASS measures the large angular scale ($1^circlesssimthetaleqslant 90^circ$) CMB polarization to constrain the tensor-to-scalar ratio at the $rsim0.01$ level and the optical depth to last scattering to the sample variance limit. This paper presents the optical characterization of the 40 GHz telescope during its first observation era, from 2016 September to 2018 February. High signal-to-noise observations of the Moon establish the pointing and beam calibration. The telescope boresight pointing variation is $<0.023^circ$ ($<1.6$% of the beams full width at half maximum (FWHM)). We estimate beam parameters per detector and in aggregate, as in the CMB survey maps. The aggregate beam has an FWHM of $1.579^circpm.001^circ$ and a solid angle of $838 pm 6 mu{rm sr}$, consistent with physical optics simulations. The corresponding beam window function has a sub-percent error per multipole at $ell < 200$. An extended $90^circ$ beam map reveals no significant far sidelobes. The observed Moon polarization shows that the instrument polarization angles are consistent with the optical model and that the temperature-to-polarization leakage fraction is $<10^{-4}$ (95% C.L.). We find that the Moon-based results are consistent with measurements of M42, RCW 38, and Tau A from CLASSs CMB survey data. In particular, Tau A measurements establish degree-level precision for instrument polarization angles.
The Cosmology Large Angular Scale Surveyor (CLASS) is an experiment to measure the signature of a gravita-tional-wave background from inflation in the polarization of the cosmic microwave background (CMB). CLASS is a multi-frequency array of four tel escopes operating from a high-altitude site in the Atacama Desert in Chile. CLASS will survey 70% of the sky in four frequency bands centered at 38, 93, 148, and 217 GHz, which are chosen to straddle the Galactic-foreground minimum while avoiding strong atmospheric emission lines. This broad frequency coverage ensures that CLASS can distinguish Galactic emission from the CMB. The sky fraction of the CLASS survey will allow the full shape of the primordial B-mode power spectrum to be characterized, including the signal from reionization at low $ell$. Its unique combination of large sky coverage, control of systematic errors, and high sensitivity will allow CLASS to measure or place upper limits on the tensor-to-scalar ratio at a level of $r=0.01$ and make a cosmic-variance-limited measurement of the optical depth to the surface of last scattering, $tau$.
The Cosmology Large Angular Scale Surveyor (CLASS) is a four-telescope array observing the largest angular scales ($2 lesssim ell lesssim 200$) of the cosmic microwave background (CMB) polarization. These scales encode information about reionization and inflation during the early universe. The instrument stability necessary to observe these angular scales from the ground is achieved through the use of a variable-delay polarization modulator (VPM) as the first optical element in each of the CLASS telescopes. Here we develop a demodulation scheme used to extract the polarization timestreams from the CLASS data and apply this method to selected data from the first two years of observations by the 40 GHz CLASS telescope. These timestreams are used to measure the $1/f$ noise and temperature-to-polarization ($Trightarrow P$) leakage present in the CLASS data. We find a median knee frequency for the pair-differenced demodulated linear polarization of 15.12 mHz and a $Trightarrow P$ leakage of $<3.8times10^{-4}$ (95% confidence) across the focal plane. We examine the sources of $1/f$ noise present in the data and find the component of $1/f$ due to atmospheric precipitable water vapor (PWV) has an amplitude of $203 pm 12 mathrm{mu K_{RJ}sqrt{s}}$ for 1 mm of PWV when evaluated at 10 mHz; accounting for $sim32%$ of the $1/f$ noise in the central pixels of the focal plane. The low level of $Trightarrow P$ leakage and $1/f$ noise achieved through the use of a front-end polarization modulator enables the observation of the largest scales of the CMB polarization from the ground by the CLASS telescopes.
The Cosmology Large Angular Scale Surveyor (CLASS) is a four telescope array designed to characterize relic primordial gravitational waves from inflation and the optical depth to reionization through a measurement of the polarized cosmic microwave ba ckground (CMB) on the largest angular scales. The frequencies of the four CLASS telescopes, one at 38 GHz, two at 93 GHz, and one dichroic system at 145/217 GHz, are chosen to avoid spectral regions of high atmospheric emission and span the minimum of the polarized Galactic foregrounds: synchrotron emission at lower frequencies and dust emission at higher frequencies. Low-noise transition edge sensor detectors and a rapid front-end polarization modulator provide a unique combination of high sensitivity, stability, and control of systematics. The CLASS site, at 5200 m in the Chilean Atacama desert, allows for daily mapping of up to 70% of the sky and enables the characterization of CMB polarization at the largest angular scales. Using this combination of a broad frequency range, large sky coverage, control over systematics, and high sensitivity, CLASS will observe the reionization and recombination peaks of the CMB E- and B-mode power spectra. CLASS will make a cosmic variance limited measurement of the optical depth to reionization and will measure or place upper limits on the tensor-to-scalar ratio, $r$, down to a level of 0.01 (95% C.L.).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا