ترغب بنشر مسار تعليمي؟ اضغط هنا

Induced Homomorphism Kirchhoffs Law in Photonics

81   0   0.0 ( 0 )
 نشر من قبل Volker Sorger
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

When solving, modelling or reasoning about complex problems, it is usually convenient to use the knowledge of a parallel physical system for representing it. This is the case of lumped-circuit abstraction, which can be used for representing mechanical and acoustic systems, thermal and heat-diffusion problems and in general partial differential equations. Integrated photonic platforms hold the prospect to perform signal processing and analog computing inherently, by mapping into hardware specific operations which relies on the wave-nature of their signals, without trusting on logic gates and digital states like electronics. Although, the distributed nature of photonic platforms leads to the absence of an equivalent approximation to Kirchhoffs law, the main principle used for representing physical systems using circuits. Here we argue that in absence of a straightforward parallelism and homomorphism can be induced. We introduce a photonic platform capable of mimicking Kirchhoffs law in photonics and used as node of a finite difference mesh for solving partial differential equation using monochromatic light in the telecommunication wavelength. We experimentally demonstrate generating in one-shot discrete solutions of a Laplace partial differential equation, with an accuracy above 95% relative to commercial solvers, for an arbitrary set of boundary conditions. Our photonic engine can provide a route to achieve chip-scale, fast (10s of ps), and integrable reprogrammable accelerators for the next generation hybrid high performance computing.

قيم البحث

اقرأ أيضاً

Lithography-free metasurfaces composed of a nano-layered stack of materials are attractive not only due to their optical properties but also by virtue of fabrication simplicity and cost reduction of devices based on such structures. We demonstrate a multi-layer metasurface with engineered electromagnetic absorption in the mid-infrared (MIR) wavelength range. Characterisation of thin SiO$_2$ and Si films sandwiched between two Au layers by way of experimental absorption and thermal radiation measurements as well as finite difference time domain (FDTD) numerical simulations is presented. Comparison of experimental and simulation data of optical properties of multilayer metasurfaces show guidelines for the absorber/emitter applications.
Gallium nitride (GaN) as a wide-band gap material has been widely used in solid-state lighting. Thanks to its high nonlinearity and high refractive index contrast, GaN-on-insulator (GaNOI) is also a promising platform for nonlinear optical applicatio ns. Despite its intriguing optical proprieties, nonlinear applications of GaN have rarely been studied due to the relatively high optical loss of GaN waveguides (2 dB/cm). In this letter, we report GaNOI microresonator with intrinsic quality factor over 2 million, corresponding to an optical loss of 0.26 dB/cm. Parametric oscillation threshold power as low as 8.8 mW is demonstrated, and the experimentally extracted nonlinear index of GaN at telecom wavelengths is estimated to be n2 = 1.2*10 -18 m2W-1, which is comparable with silicon. Single soliton generation in GaN is implemented by an auxiliary laser pumping scheme, so as to mitigate the high thermorefractive effect in GaN. The large intrinsic nonlinear refractive index, together with its broadband transparency window and high refractive index contrast, make GaNOI a most balanced platform for chip-scale nonlinear applications.
Integrated photonics plays a central role in modern science and technology, enabling experiments from nonlinear science to quantum information, ultraprecise measurements and sensing, and advanced applications like data communication and signal proces sing. Optical materials with favorable properties are essential for nanofabrication of integrated-photonics devices. Here we describe a material for integrated nonlinear photonics, tantalum pentoxide (Ta$_2$O$_5$, hereafter tantala), which offers low intrinsic material stress, low optical loss, and efficient access to Kerr-nonlinear processes. We utilize >800-nm thick tantala films deposited via ion-beam sputtering on oxidized silicon wafers. The tantala films contain a low residual tensile stress of 38 MPa, and they offer a Kerr index $n_2$=6.2(23)$times10^{-19}$ m$^2$/W, which is approximately a factor of three higher than silicon nitride. We fabricate integrated nonlinear resonators and waveguides without the cracking challenges that are prevalent in stoichiometric silicon nitride. The tantala resonators feature an optical quality factor up to $3.8times10^6$, which enables us to generate ultrabroad-bandwidth Kerr-soliton frequency combs with low threshold power. Moreover, tantala waveguides enable supercontinuum generation across the near-infrared from low-energy, ultrafast seed pulses. Our work introduces a versatile material platform for integrated, low-loss nanophotonics that can be broadly applied and enable heterogeneous integration.
Optimization methods are playing an increasingly important role in all facets of photonics engineering, from integrated photonics to free space diffractive optics. However, efforts in the photonics community to develop optimization algorithms remain uncoordinated, which has hindered proper benchmarking of design approaches and access to device designs based on optimization. We introduce MetaNet, an online database of photonic devices and design codes intended to promote coordination and collaboration within the photonics community. Using metagratings as a model system, we have uploaded over one hundred thousand device layouts to the database, as well as source code for implementations of local and global topology optimization methods. Further analyses of these large datasets allow the distribution of optimized devices to be visualized for a given optimization method. We expect that the coordinated research efforts enabled by MetaNet will expedite algorithm development for photonics design.
105 - Di Zhu , Linbo Shao , Mengjie Yu 2021
Lithium niobate (LN), an outstanding and versatile material, has influenced our daily life for decades: from enabling high-speed optical communications that form the backbone of the Internet to realizing radio-frequency filtering used in our cell pho nes. This half-century-old material is currently embracing a revolution in thin-film LN integrated photonics. The success of manufacturing wafer-scale, high-quality, thin films of LN on insulator (LNOI), accompanied with breakthroughs in nanofabrication techniques, have made high-performance integrated nanophotonic components possible. With rapid development in the past few years, some of these thin-film LN devices, such as optical modulators and nonlinear wavelength converters, have already outperformed their legacy counterparts realized in bulk LN crystals. Furthermore, the nanophotonic integration enabled ultra-low-loss resonators in LN, which unlocked many novel applications such as optical frequency combs and quantum transducers. In this Review, we cover -- from basic principles to the state of the art -- the diverse aspects of integrated thin-film LN photonics, including the materials, basic passive components, and various active devices based on electro-optics, all-optical nonlinearities, and acousto-optics. We also identify challenges that this platform is currently facing and point out future opportunities. The field of integrated LNOI photonics is advancing rapidly and poised to make critical impacts on a broad range of applications in communication, signal processing, and quantum information.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا