ﻻ يوجد ملخص باللغة العربية
Ordering of mobile defects in functional materials can give rise to fundamentally new phases possessing ferroic and multiferroic functionalities. Here we develop the Landau theory for strain induced ordering of defects (e.g. oxygen vacancies) in thin oxide films, considering both the ordering and wavelength of possible instabilities. Using derived analytical expressions for the energies of various defect-ordered states, we calculated and analyzed phase diagrams dependence on the film-substrate mismatch strain, concentration of defects, and Vegard coefficients. Obtained results open possibilities to create and control superstructures of ordered defects in thin oxide films by selecting the appropriate substrate and defect concentration.
We develop a phenomenological thermodynamic theory of ferroelectric BaTiO3 (BT) thin films epitaxially grown on cubic substrates using the Landau-Devonshire eight-order potential. The constructed misfit-temperature phase diagram is asymmetrical. We f
Molecular systems are materials that intersect with many different promising fields such as organic/molecular electronics and spintronics, organic magnetism and quantum computing1-7. Particularly, magnetism in organic materials is very intriguing: th
Recent advances in high-throughput experimentation for combinatorial studies have accelerated the discovery and analysis of materials across a wide range of compositions and synthesis conditions. However, many of the more powerful characterization me
Using Landau-Ginzburg-Devonshire theory, we considered the impact of the flexoelectro-chemical coupling on the size effects inpolar properties and phase transitions of thin ferroelectric films with a layer of elastic defects. We investigated a typica
The spectacular metal-to-insulator transition of V2O3 can be progressively suppressed in thin film samples. Evidence for phase separation was observed using microbridges as a mesoscopic probe of transport properties where the same film possesses doma