ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Interaction Between Deep Detectors and Siamese Trackers in Video Surveillance

79   0   0.0 ( 0 )
 نشر من قبل Madhu Kiran
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Visual object tracking is an important function in many real-time video surveillance applications, such as localization and spatio-temporal recognition of persons. In real-world applications, an object detector and tracker must interact on a periodic basis to discover new objects, and thereby to initiate tracks. Periodic interactions with the detector can also allow the tracker to validate and/or update its object template with new bounding boxes. However, bounding boxes provided by a state-of-the-art detector are noisy, due to changes in appearance, background and occlusion, which can cause the tracker to drift. Moreover, CNN-based detectors can provide a high level of accuracy at the expense of computational complexity, so interactions should be minimized for real-time applications. In this paper, a new approach is proposed to manage detector-tracker interactions for trackers from the Siamese-FC family. By integrating a change detection mechanism into a deep Siamese-FC tracker, its template can be adapted in response to changes in a targets appearance that lead to drifts during tracking. An abrupt change detection triggers an update of tracker template using the bounding box produced by the detector, while in the case of a gradual change, the detector is used to update an evolving set of templates for robust matching. Experiments were performed using state-of-the-art Siamese-FC trackers and the YOLOv3 detector on a subset of videos from the OTB-100 dataset that mimic video surveillance scenarios. Results highlight the importance for reliable VOT of using accurate detectors. They also indicate that our adaptive Siamese trackers are robust to noisy object detections, and can significantly improve the performance of Siamese-FC tracking.



قيم البحث

اقرأ أيضاً

Recently, the majority of visual trackers adopt Convolutional Neural Network (CNN) as their backbone to achieve high tracking accuracy. However, less attention has been paid to the potential adversarial threats brought by CNN, including Siamese netwo rk. In this paper, we first analyze the existing vulnerabilities in Siamese trackers and propose the requirements for a successful adversarial attack. On this basis, we formulate the adversarial generation problem and propose an end-to-end pipeline to generate a perturbed texture map for the 3D object that causes the trackers to fail. Finally, we conduct thorough experiments to verify the effectiveness of our algorithm. Experiment results show that adversarial examples generated by our algorithm can successfully lower the tracking accuracy of victim trackers and even make them drift off. To the best of our knowledge, this is the first work to generate 3D adversarial examples on visual trackers.
In recent years, Siamese network based trackers have significantly advanced the state-of-the-art in real-time tracking. However, state-of-the-art Siamese trackers suffer from high memory cost which restricts their applicability in mobile applications having strict constraints on memory budget. To address this issue, we propose a novel distilled Siamese tracking framework to learn small, fast yet accurate trackers (students), which capture critical knowledge from large Siamese trackers (teachers) by a teacher-students knowledge distillation model. This model is intuitively inspired by a one-teacher vs multi-students learning mechanism, which is the most usual teaching method in the school. In particular, it contains a single teacher-student distillation model and a student-student knowledge sharing mechanism. The first one is designed by a tracking-specific distillation strategy to transfer knowledge from the teacher to students. The later is utilized for mutual learning between students to enable an in-depth knowledge understanding. To the best of our knowledge, we are the first to investigate knowledge distillation for Siamese trackers and propose a distilled Siamese tracking framework. We demonstrate the generality and effectiveness of our framework by conducting a theoretical analysis and extensive empirical evaluations on several popular Siamese trackers. The results on five tracking benchmarks clearly show that the proposed distilled trackers achieve compression rates up to 18$times$ and frame-rates of $265$ FPS with speedups of 3$times$, while obtaining similar or even slightly improved tracking accuracy.
We propose a novel Siamese Natural Language Tracker (SNLT), which brings the advancements in visual tracking to the tracking by natural language (NL) descriptions task. The proposed SNLT is applicable to a wide range of Siamese trackers, providing a new class of baselines for the tracking by NL task and promising future improvements from the advancements of Siamese trackers. The carefully designed architecture of the Siamese Natural Language Region Proposal Network (SNL-RPN), together with the Dynamic Aggregation of vision and language modalities, is introduced to perform the tracking by NL task. Empirical results over tracking benchmarks with NL annotations show that the proposed SNLT improves Siamese trackers by 3 to 7 percentage points with a slight tradeoff of speed. The proposed SNLT outperforms all NL trackers to-date and is competitive among state-of-the-art real-time trackers on LaSOT benchmarks while running at 50 frames per second on a single GPU.
Robust road detection is a key challenge in safe autonomous driving. Recently, with the rapid development of 3D sensors, more and more researchers are trying to fuse information across different sensors to improve the performance of road detection. A lthough many successful works have been achieved in this field, methods for data fusion under deep learning framework is still an open problem. In this paper, we propose a Siamese deep neural network based on FCN-8s to detect road region. Our method uses data collected from a monocular color camera and a Velodyne-64 LiDAR sensor. We project the LiDAR point clouds onto the image plane to generate LiDAR images and feed them into one of the branches of the network. The RGB images are fed into another branch of our proposed network. The feature maps that these two branches extract in multiple scales are fused before each pooling layer, via padding additional fusion layers. Extensive experimental results on public dataset KITTI ROAD demonstrate the effectiveness of our proposed approach.
217 - Delong Qi , Weijun Tan , Zhifu Liu 2021
Gun violence is a severe problem in the world, particularly in the United States. Deep learning methods have been studied to detect guns in surveillance video cameras or smart IP cameras and to send a real-time alert to security personals. One proble m for the development of gun detection algorithms is the lack of large public datasets. In this work, we first publish a dataset with 51K annotated gun images for gun detection and other 51K cropped gun chip images for gun classification we collect from a few different sources. To our knowledge, this is the largest dataset for the study of gun detection. This dataset can be downloaded at www.linksprite.com/gun-detection-datasets. We present a gun detection system using a smart IP camera as an embedded edge device, and a cloud server as a manager for device, data, alert, and to further reduce the false positive rate. We study to find solutions for gun detection in an embedded device, and for gun classification on the edge device and the cloud server. This edge/cloud framework makes the deployment of gun detection in the real world possible.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا