ترغب بنشر مسار تعليمي؟ اضغط هنا

Neutrino mass spectroscopy using Er$^{3+}$ ions placed at inversion center of host crystals

69   0   0.0 ( 0 )
 نشر من قبل Motohiko Yoshimura
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose neutrino mass spectroscopy using Er$^{3+}$:Cs$_2$NaYF$_6$ or :Y$_2$O$_3$ crystal placed in hollow of a Bragg fiber as a target system. Unknown neutrino parameters and properties such as the lightest neutrino mass, Majorana/Dirac distinction, and CP violating phases can be explored by measuring scattered photons ($gamma$) along the excitation (and fiber) axis by varying Raman trigger ($gamma_0$) directions, in Er$^{3+}$ de-excitation process from $|erangle $ state to $|grangle $ state; $|erangle ,, | erangle + gamma_0 rightarrow | grangle + gamma + u_ibar{ u}_j$, $ u_i,, i = 1, 2,3$ being a mass-resolved neutrino state. Rates and required level of QED background rejection are calculated using measured data of the target system.



قيم البحث

اقرأ أيضاً

118 - H. Hara , N. Sasao , 2019
Electron spin flip in atoms or ions can cause neutrino pair emission, which provides a method to explore still unknown important neutrino properties by measuring spectrum of emitted photon in association, when electroweak rates are amplified by a pha se coherence among participating atoms. Two important remaining neutrino issues to be determined are the absolute neutrino mass (or the smallest neutrino mass in the three-flavor scheme) and the nature of neutrino masses, either of Dirac type or of Majorana type. Use of Raman scattered photon was recently proposed as a promising tool for this purpose. In the present work we continue along this line to further identify promising ion targets in crystals, calculate neutrino pair emission rates, and study how to extract neutrino properties from Raman scattered photon angular distribution. Divalent lanthanoid ions in crystals, in particular Sm$^{2+}$, are the most promising, due to (1) its large number density, (2) sharp optical lines, (3) a variety of available ionic levels. Rejection of amplified quantum electrodynamic backgrounds is made possible to controllable levels by choosing a range of Raman trigger direction, when Sm$^{2+}$ sites are at O$_h$ inversion center of host crystals such as SrF$_2$.
108 - H. Hara , A. Yoshimi , 2021
A new, indirect detection method of neutrino pairs $ ubar{ u}$ using magnetization generated at triggered radiative emission of neutrino pair (RENP), $ |e rangle rightarrow | g rangle + gamma + u bar{ u} $ (atomic de-transition from state $|e rangle $ to state $|g rangle$ accompanied by a photon $gamma$), is investigated in order to determine unknown neutrino properties; Majorana/Dirac distinction and absolute neutrino masses. Magnetization associated with RENP events has parity violating component intrinsic to weak interaction enforced by crystal field effect in solids, and greatly helps background rejection of quantum electrodynamic (QED) origin even when these backgrounds are amplified. In proposed experiment we prepare a coherently excited body of trivalent lanthanoid ions, Er$^{3+}$ (a best candidate ion so far found), doped in a transparent dielectric crystal. The magnetic moment $mu langle vec{S}cdotvec{k} rangle/k $ arising from generated electron spin $vec{S}$ parallel to trigger photon direction $vec{k}/k$ is parity odd, and is absent in QED processes. The generated magnetic field of order nano gauss or larger is stored in crystals long after pair emission event till spin relaxation time. An improved calculation method of coherent rate and angular distribution of magnetization is developed in order to incorporate finite size effect of crystal target beyond the infinite size limit in previous calculations.
Quantum transduction between microwave and optical frequencies is important for connecting superconducting quantum platforms in a quantum network. Ensembles of rare-earth ions are promising candidates to achieve this conversion due to their collectiv e coherent properties at microwave and optical frequencies. Erbium ions are of particular interest because of their telecom wavelength optical transitions that are compatible with fiber communication networks. Here, we report the optical and electron spin properties of erbium doped yttrium orthovanadate (Er$^{3+}$:YVO$_{4}$), including high-resolution optical spectroscopy, electron paramagnetic resonance studies and an initial demonstration of microwave to optical conversion of classical fields. The highly absorptive optical transitions and narrow ensemble linewidths make Er$^{3+}$:YVO$_{4}$ promising for magneto-optic quantum transduction.
We perform a statistical analysis with the prospective results of future experiments on neutrino-less double beta decay, direct searches for neutrino mass (KATRIN) and cosmological observations. Realistic errors are used and the nuclear matrix elemen t uncertainty for neutrino-less double beta decay is also taken into account. Three benchmark scenarios are introduced, corresponding to quasi-degenerate, inverse hierarchical neutrinos, and an intermediate case. We investigate to what extend these scenarios can be reconstructed. Furthermore, we check the compatibility of the scenarios with the claimed evidence of neutrino-less double beta decay.
We explore the possibility of distinguishing neutrino mass hierarchies through the neutrino signal from dark matter annihilation at neutrino telescopes. We consider a simple extension of the standard model where the neutrino masses and mixing angles are obtained via the type-II seesaw mechanism as an explicit example. We show that future extensions of IceCube neutrino telescope may detect the neutrino signal from DM annihilation at the Galactic Center and inside the Sun, and differentiate between the normal and inverted mass hierarchies, in this model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا