ترغب بنشر مسار تعليمي؟ اضغط هنا

Tunable strain soliton networks confine electrons in Van der Waals materials

130   0   0.0 ( 0 )
 نشر من قبل H\\'ector Ochoa de Eguileor
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Sliding and twisting van der Waals layers with respect to each other gives rise to moire structures with emergent electronic properties. Electrons in these moire structures feel weak potentials that are typically in the tens of millielectronvolt range when the moire structures are smooth at the atomic scale. Here we report a facile technique to achieve deep, deterministic trapping potentials via strain-based moire engineering in van der Waals bilayers. We use elasto-scanning tunneling microscopy to show that uniaxial strain drives a commensurate-incommensurate lattice transition in a multilayer MoSe$_2$ system. In the incommensurate state, the top monolayer is partially detached from the bulk through the spontaneous formation of topological solitons where stress is relieved. Intersecting solitons form a honeycomb-like network resulting from the three-fold symmetry of the adhesion potential between layers. The vertices of the honeycomb network occur in bound pairs with different interlayer stacking arrangements. One vertex of the pair is found to be an efficient trap for electrons, displaying two states that are deeply confined within the semiconductor gap and have a spatial extent of 2 nm. Honeycomb soliton networks thus provide a unique path to engineer an array of identical deeply confined states with a strain-dependent tunable spatial separation, without the necessity of introducing chemical defects into the host materials.

قيم البحث

اقرأ أيضاً

Two-dimensional (2D) materials exhibit a number of improved mechanical, optical, electronic properties compared to their bulk counterparts. The absence of dangling bonds in the cleaved surfaces of these materials allows combining different 2D materia ls into van der Waals heterostructures to fabricate p-n junctions, photodetectors, 2D-2D ohmic contacts that show unexpected performances. These intriguing results are regularly summarized in comprehensive reviews. A strategy to tailor their properties even further and to observe novel quantum phenomena consists in the fabrication of superlattices whose unit cell is formed either by two dissimilar 2D materials or by a 2D material subjected to a periodical perturbation, each component contributing with different characteristics. Furthermore, in a 2D materials-based superlattice, the interlayer interaction between the layers mediated by van der Waals forces constitutes a key parameter to tune the global properties of the superlattice. The above-mentioned factors reflect the potential to devise countless combinations of van der Waals 2D materials based superlattices. In the present feature article, we explain in detail the state-of-the-art of 2D materials-based superlattices and we describe the different methods to fabricate them, classified as vertical stacking, intercalation with atoms or molecules, moire patterning, strain engineering and lithographic design. We also aim to highlight some of the specific applications for each type of superlattices.
Transition metal monochalcogenides comprise a class of two-dimensional materials with electronic band gaps that are highly sensitive to material thickness and chemical composition. Here, we explore the tunability of the electronic excitation spectrum in GaSe using angle-resolved photoemission spectroscopy. The electronic structure of the material is modified by $textit{in-situ}$ potassium deposition as well as by forming GaS$_{x}$Se$_{1-x}$ alloy compounds. We find that potassium decouples the top-most tetra-layer of the GaSe unit cell, leading to a substantial change of the dispersion around the valence band maximum (VBM). The observed band dispersion of a single tetralayer is consistent with a transition from the direct gap character of the bulk to the indirect gap character expected for monolayer GaSe. Upon alloying with sulfur, we observe a phase transition from AB to $text{AA}^{prime}$ stacking. Alloying also results in a rigid energy shift of the VBM towards higher binding energies which correlates with a blue shift in the luminescence. The increase of the band gap upon sulfur alloying does not appear to change the dispersion or character of the VBM appreciably, implying that it is possible to engineer the gap of these materials while maintaining their salient electronic properties.
Stacking monolayers of transition metal dichalcogenides into a heterostructure with a finite twist-angle gives rise to artificial moire superlattices with a tunable periodicity. As a consequence, excitons experience a periodic potential, which can be exploited to tailor optoelectronic properties of these materials. While recent experimental studies have confirmed twist-angle dependent optical spectra, the microscopic origin of moire exciton resonances has not been fully clarified yet. Here, we combine first principle calculations with the excitonic density matrix formalism to study transitions between different moire exciton phases and their impact on optical properties of the twisted MoSe$_2$/WSe$_2$ heterostructure. At angles smaller than 2$^{circ}$ we find flat, moire trapped states for inter- and intralayer excitons. This moire exciton phase drastically changes into completely delocalized states already at 3$^{circ}$. We predict a linear and quadratic twist-angle dependence of excitonic resonances for the moire-trapped and delocalized exciton phase, respectively. Our work provides microscopic insights opening the possibility to tailor moire exciton phases in van der Waals superlattices.
Carrier multiplication (CM), a photo-physical process to generate multiple electron-hole pairs by exploiting excess energy of free carriers, is explored for efficient photovoltaic conversion of photons from the blue solar band, predominantly wasted a s heat in standard solar cells. Current state-of-the-art approaches with nanomaterials have demonstrated improved CM but are not satisfactory due to high energy loss and inherent difficulties with carrier extraction. Here, we report ultra-efficient CM in van der Waals (vdW) layered materials that commences at the energy conservation limit and proceeds with nearly 100% conversion efficiency. A small threshold energy, as low as twice the bandgap, was achieved, marking an onset of quantum yield with enhanced carrier generation. Strong Coulomb interactions between electrons confined within vdW layers allow rapid electron-electron scattering to prevail over electron-phonon scattering. Additionally, the presence of electron pockets spread over momentum space could also contribute to the high CM efficiency. Combining with high conductivity and optimal bandgap, these superior CM characteristics identify vdW materials for third-generation solar cell.
Layered materials can be assembled vertically to fabricate a new class of van der Waals (VDW) heterostructures a few atomic layers thick, compatible with a wide range of substrates and optoelectronic device geometries, enabling new strategies for con trol of light-matter coupling. Here, we incorporate molybdenum diselenide/boron nitride (MoSe$_2$/hBN) quantum wells (QWs) in a tunable optical microcavity. Part-light-part-matter polariton eigenstates are observed as a result of the strong coupling between MoSe$_2$ excitons and cavity photons, evidenced from a clear anticrossing between the neutral exciton and the cavity modes with a splitting of 20 meV for a single MoSe$_2$ monolayer QW, enhanced to 29 meV in MoSe$_2$/hBN/MoSe$_2$ double-QWs. The splitting at resonance provides an estimate of the exciton radiative lifetime of 0.4 ps. Our results pave the way for room temperature polaritonic devices based on multiple-QW VDW heterostructures, where polariton condensation and electrical polariton injection through the incorporation of graphene contacts may be realised.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا