ﻻ يوجد ملخص باللغة العربية
Recent evidence from magnetic torque, electron spin resonance, and second harmonic generation indicate that the prototypical quantum spin liquid candidate, herbertsmithite, has a symmetry lower than its x-ray refined trigonal space group. Here, we consider known and possible distortions of this mineral class, along with related copper kagome oxides and fluorides, relate these to possible valence bond patterns, and comment on their relevance to the physics of these interesting materials.
We use quantum Monte Carlo simulations to study a quantum $S=1/2$ spin model with competing multi-spin interactions. We find a quantum phase transition between a columnar valence-bond solid (cVBS) and a Neel antiferromagnet (AFM), as in the scenario
We explore the phase diagram and the low-energy physics of three Heisenberg antiferromagnets which, like the kagome lattice, are networks of corner-sharing triangles but contain two sets of inequivalent short-distance resonance loops. We use a combin
We present numerical evidence for the emergence of an extended valence bond solid (VBS) phase at $T=0$ in the kagome $S=1/2$ Heisenberg antiferromagnet with ferromagnetic further-neighbor interactions. The VBS is located at the boundary between two m
Employing complementary torque magnetometry and electron spin resonance on single crystals of herbertsmithite, the closest realization to date of a quantum kagome antiferromagnet featuring a spin-liquid ground state, we provide novel insight into dif
We introduce for SU(2) quantum spin systems the Valence Bond Entanglement Entropy as a counting of valence bond spin singlets shared by two subsystems. For a large class of antiferromagnetic systems, it can be calculated in all dimensions with Quantu