ترغب بنشر مسار تعليمي؟ اضغط هنا

Simulating the interstellar medium of galaxies with radiative transfer, non-equilibrium thermochemistry, and dust

87   0   0.0 ( 0 )
 نشر من قبل Rahul Kannan
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Rahul Kannan




اسأل ChatGPT حول البحث

We present a novel framework to self-consistently model the effects of radiation fields, dust physics and molecular chemistry (H$_2$) in the interstellar medium (ISM) of galaxies. The model combines a state-of-the-art radiation hydrodynamics module with a non-equilibrium thermochemistry module that accounts for H$_2$ coupled to a realistic dust formation and destruction model, all integrated into the new stellar feedback framework SMUGGLE. We test this model on high-resolution isolated Milky-Way (MW) simulations. We show that photoheating from young stars makes stellar feedback more efficient, but this effect is quite modest in low gas surface density galaxies like the MW. The multi-phase structure of the ISM, however, is highly dependent on the strength of the interstellar radiation field. We are also able to predict the distribution of H$_2$, that allow us to match the molecular Kennicutt-Schmidt (KS) relation, without calibrating for it. We show that the dust distribution is a complex function of density, temperature and ionization state of the gas which cannot be reproduced by simple scaling relations often used in the literature. Our model is only able to match the observed dust temperature distribution if radiation from the old stellar population is considered, implying that these stars have a non-negligible contribution to dust heating in the ISM. Our state-of-the-art model is well-suited for performing next generation cosmological galaxy formation simulations, which will be able to predict a wide range of resolved ($sim 10$ pc) properties of galaxies.

قيم البحث

اقرأ أيضاً

Typical galaxies emit about one third of their energy in the infrared. The origin of this emission reprocessed starlight absorbed by interstellar dust grains and reradiated as thermal emission in the infrared. In particularly dusty galaxies, such as starburst galaxies, the fraction of energy emitted in the infrared can be as high as 90%. Dust emission is found to be an excellent tracer of the beginning and end stages of a stars life, where dust is being produced by post-main-sequence stars, subsequently added to the interstellar dust reservoir, and eventually being consumed by star and planet formation. This work reviews the current understanding of the size and properties of this interstellar dust reservoir, by using the Large Magellanic Cloud as an example, and what can be learned about the dust properties and star formation in galaxies from this dust reservoir, using SPICA, building on previous work performed with the Herschel and Spitzer Space Telescopes, as well as the Infrared Space Observatory.
Dwarf spheroidal galaxies are among the most numerous galaxy population in the Universe, but their main formation and evolution channels are still not well understood. The three dwarf spheroidal satellites (NGC147, NGC185, and NGC205) of the Andromed a galaxy are characterised by very different interstellar medium (ISM) properties, which might suggest them being at different galaxy evolutionary stages. While the dust content of NGC205 has been studied in detail by De Looze et al. (2012), we present new Herschel dust continuum observations of NGC147 and NGC185. The non-detection of NGC147 in Herschel SPIRE maps puts a strong constraint on its dust mass (< 128 Msun). For NGC185, we derive a total dust mass M_d = 5.1 x 10^3 Msun, which is a factor of ~2-3 higher than that derived from ISO and Spitzer observations and confirms the need for longer wavelength observations to trace more massive cold dust reservoirs. We, furthermore, estimate the dust production by asymptotic giant branch (AGB) stars and supernovae (SNe). For NGC147, the upper limit on the dust mass is consistent with expectations of the material injected by the evolved stellar population. In NGC185 and NGC205, the observed dust content is one order of magnitude higher compared to the estimated dust production by AGBs and SNe. Efficient grain growth, and potentially longer dust survival times (3-6 Gyr) are required to account for their current dust content. Our study confirms the importance of grain growth in the gas phase to account for the current dust reservoir in galaxies.
71 - Akio K. Inoue 2020
Estimating the temperature and mass of dust in high-$z$ galaxies is essential for discussions of the origin of dust in the early Universe. However, this suffers from limited sampling of the infrared spectral-energy distribution. Here we present an al gorithm for deriving the temperature and mass of dust in a galaxy, assuming dust to be in radiative equilibrium. We formulate the algorithm for three geometries: a thin spherical shell, a homogeneous sphere, and a clumpy sphere. We also discuss effects of the mass absorption coefficients of dust at ultraviolet and infrared wavelengths, $kappa_{rm UV}$ and $kappa_{rm IR}$, respectively. As an example, we apply the algorithm to a normal, dusty star-forming galaxy at $z=7.5$, A1689zD1, for which three data points in the dust continuum are available. Using $kappa_{rm UV}=5.0times10^4$ cm$^2$ g$^{-1}$ and $kappa_{rm IR}=30(lambda/100mu m)^{-beta}$ cm$^2$ g$^{-1}$ with $beta=2.0$, we obtain dust temperatures of 38--70~K and masses of $10^{6.5-7.3}$ M$_odot$ for the three geometries considered. We obtain similar temperatures and masses from just a single data point in the dust continuum, suggesting the usefulness of the algorithm for high-$z$ galaxies with limited infrared observations. In the clumpy-sphere case, the temperature becomes equal to that of the usual modified black-body fit, because an additional parameter describing the clumpiness works as an adjuster. The best-fit clumpiness parameter is $xi_{rm cl}=0.1$, corresponding to $sim10$% of the volume filling factor of the clumps in this high-$z$ galaxy if the clump size is $sim10$ pc, similar to that of giant molecular clouds in the local Universe.
We introduce the Stars and MUltiphase Gas in GaLaxiEs -- SMUGGLE model, an explicit and comprehensive stellar feedback model for the moving-mesh code arepo. This novel sub-resolution model resolves the multiphase gas structure of the interstellar med ium and self-consistently generates gaseous outflows. The model implements crucial aspects of stellar feedback including photoionization, radiation pressure, energy and momentum injection from stellar winds and from supernovae. We explore this model in high-resolution isolated simulations of Milky Way-like disc galaxies. Stellar feedback regulates star formation to the observed level and naturally captures the establishment of a Kennicutt-Schmidt relation. This result is achieved independent of the numerical mass and spatial resolution of the simulations. Gaseous outflows are generated with average mass loading factors of the order of unity. Strong outflow activity is correlated with peaks in the star formation history of the galaxy with evidence that most of the ejected gas eventually rains down onto the disc in a galactic fountain flow that sustains late-time star formation. Finally, the interstellar gas in the galaxy shows a distinct multiphase distribution with a coexistence of cold, warm and hot phases.
53 - Ryan McKinnon 2016
We present full volume cosmological simulations using the moving-mesh code AREPO to study the coevolution of dust and galaxies. We extend the dust model in AREPO to include thermal sputtering of grains and investigate the evolution of the dust mass f unction, the cosmic distribution of dust beyond the interstellar medium, and the dependence of dust-to-stellar mass ratio on galactic properties. The simulated dust mass function is well-described by a Schechter fit and lies closest to observations at $z = 0$. The radial scaling of projected dust surface density out to distances of $10 , text{Mpc}$ around galaxies with magnitudes $17 < i < 21$ is similar to that seen in Sloan Digital Sky Survey data, albeit with a lower normalisation. At $z = 0$, the predicted dust density of $Omega_text{dust} approx 1.3 times 10^{-6}$ lies in the range of $Omega_text{dust}$ values seen in low-redshift observations. We find that dust-to-stellar mass ratio anti-correlates with stellar mass for galaxies living along the star formation main sequence. Moreover, we estimate the $850 , mutext{m}$ number density functions for simulated galaxies and analyse the relation between dust-to-stellar flux and mass ratios at $z = 0$. At high redshift, our model fails to produce enough dust-rich galaxies, and this tension is not alleviated by adopting a top-heavy initial mass function. We do not capture a decline in $Omega_text{dust}$ from $z = 2$ to $z = 0$, which suggests that dust production mechanisms more strongly dependent on star formation may help to produce the observed number of dusty galaxies near the peak of cosmic star formation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا