ترغب بنشر مسار تعليمي؟ اضغط هنا

An ASKAP search for a radio counterpart to the first high-significance neutron star-black hole merger LIGO/Virgo S190814bv

85   0   0.0 ( 0 )
 نشر من قبل Dougal Dobie
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present results from a search for a radio transient associated with the LIGO/Virgo source S190814bv, a likely neutron star-black hole (NSBH) merger, with the Australian Square Kilometre Array Pathfinder. We imaged a $30,{rm deg}^2$ field at $Delta T$=2, 9 and 33 days post-merger at a frequency of 944,MHz, comparing them to reference images from the Rapid ASKAP Continuum Survey observed 110 days prior to the event. Each epoch of our observations covers $89%$ of the LIGO/Virgo localisation region. We conducted an untargeted search for radio transients in this field, resulting in 21 candidates. For one of these, object[AT2019osy]{AT2019osy}, we performed multi-wavelength follow-up and ultimately ruled out the association with S190814bv. All other candidates are likely unrelated variables, but we cannot conclusively rule them out. We discuss our results in the context of model predictions for radio emission from neutron star-black hole mergers and place constrains on the circum-merger density and inclination angle of the merger. This survey is simultaneously the first large-scale radio follow-up of an NSBH merger, and the most sensitive widefield radio transients search to-date.



قيم البحث

اقرأ أيضاً

We present the results from a search for the electromagnetic counterpart of the LIGO/Virgo event S190510g using the Dark Energy Camera (DECam). S190510g is a binary neutron star (BNS) merger candidate of moderate significance detected at a distance o f 227$pm$92 Mpc and localized within an area of 31 (1166) square degrees at 50% (90%) confidence. While this event was later classified as likely non-astrophysical in nature within 30 hours of the event, our short latency search and discovery pipeline identified 11 counterpart candidates, all of which appear consistent with supernovae following offline analysis and spectroscopy by other instruments. Later reprocessing of the images enabled the recovery of 6 more candidates. Additionally, we implement our candidate selection procedure on simulated kilonovae and supernovae under DECam observing conditions (e.g., seeing, exposure time) with the intent of quantifying our search efficiency and making informed decisions on observing strategy for future similar events. This is the first BNS counterpart search to employ a comprehensive simulation-based efficiency study. We find that using the current follow-up strategy, there would need to be 19 events similar to S190510g for us to have a 99% chance of detecting an optical counterpart, assuming a GW170817-like kilonova. We further conclude that optimization of observing plans, which should include preference for deeper images over multiple color information, could result in up to a factor of 1.5 reduction in the total number of followups needed for discovery.
On 2019 August 14, the Advanced LIGO and Virgo interferometers detected the high-significance gravitational wave (GW) signal S190814bv. The GW data indicated that the event resulted from a neutron star--black hole (NSBH) merger, or potentially a low- mass binary black hole merger. Due to the low false alarm rate and the precise localization (23 deg$^2$ at 90%), S190814bv presented the community with the best opportunity yet to directly observe an optical/near-infrared counterpart to a NSBH merger. To search for potential counterparts, the GROWTH collaboration performed real-time image subtraction on 6 nights of public Dark Energy Camera (DECam) images acquired in the three weeks following the merger, covering $>$98% of the localization probability. Using a worldwide network of follow-up facilities, we systematically undertook spectroscopy and imaging of optical counterpart candidates. Combining these data with a photometric redshift catalog, we ruled out each candidate as the counterpart to S190814bv and we placed deep, uniform limits on the optical emission associated with S190814bv. For the nearest consistent GW distance, radiative transfer simulations of NSBH mergers constrain the ejecta mass of S190814bv to be $M_mathrm{ej} < 0.04$~$M_{odot}$ at polar viewing angles, or $M_mathrm{ej} < 0.03$~$M_{odot}$ if the opacity is $kappa < 2$~cm$^2$g$^{-1}$. Assuming a tidal deformability for the neutron star at the high end of the range compatible with GW170817 results, our limits would constrain the BH spin component aligned with the orbital momentum to be $ chi < 0.7$ for mass ratios $Q < 6$, with weaker constraints for more compact neutron stars. We publicly release the photometry from this campaign at http://www.astro.caltech.edu/~danny/static/s190814bv.
We present optical follow-up imaging obtained with the Katzman Automatic Imaging Telescope, Las Cumbres Observatory Global Telescope Network, Nickel Telescope, Swope Telescope, and Thacher Telescope of the LIGO/Virgo gravitational wave (GW) signal fr om the neutron star-black hole (NSBH) merger GW190814. We searched the GW190814 localization region (19 deg$^{2}$ for the 90th percentile best localization), covering a total of 51 deg$^{2}$ and 94.6% of the two-dimensional localization region. Analyzing the properties of 189 transients that we consider as candidate counterparts to the NSBH merger, including their localizations, discovery times from merger, optical spectra, likely host-galaxy redshifts, and photometric evolution, we conclude that none of these objects are likely to be associated with GW190814. Based on this finding, we consider the likely optical properties of an electromagnetic counterpart to GW190814, including possible kilonovae and short gamma-ray burst afterglows. Using the joint limits from our follow-up imaging, we conclude that a counterpart with an $r$-band decline rate of 0.68 mag day$^{-1}$, similar to the kilonova AT 2017gfo, could peak at an absolute magnitude of at most $-17.8$ mag (50% confidence). Our data are not constraining for red kilonovae and rule out blue kilonovae with $M>0.5 M_{odot}$ (30% confidence). We strongly rule out all known types of short gamma-ray burst afterglows with viewing angles $<$17$^{circ}$ assuming an initial jet opening angle of $sim$$5.2^{circ}$ and explosion energies and circumburst densities similar to afterglows explored in the literature. Finally, we explore the possibility that GW190814 merged in the disk of an active galactic nucleus, of which we find four in the localization region, but we do not find any candidate counterparts among these sources.
We present a wide-field optical imaging search for electromagnetic counterparts to the likely neutron star - black hole (NS-BH) merger GW190814/S190814bv. This compact binary merger was detected through gravitational waves by the LIGO/Virgo interfero meters, with masses suggestive of a NS-BH merger. We imaged the LIGO/Virgo localization region using the MegaCam instrument on the Canada-France-Hawaii Telescope. We describe our hybrid observing strategy of both tiling and galaxy-targeted observations, as well as our image differencing and transient detection pipeline. Our observing campaign produced some of the deepest multi-band images of the region between 1.7 and 8.7 days post-merger, reaching a 5sigma depth of g > 22.8 (AB mag) at 1.7 days and i > 23.1 and i > 23.9 at 3.7 and 8.7 days, respectively. These observations cover a mean total integrated probability of 67.0% of the localization region. We find no compelling candidate transient counterparts to this merger in our images, which suggests that either the lighter object was tidally disrupted inside of the BHs innermost stable circular orbit, the transient lies outside of the observed sky footprint, or the lighter object is a low-mass BH. We use 5sigma source detection upper limits from our images in the NS-BH interpretation of this merger to constrain the mass of the kilonova ejecta to be Mej < 0.015Msun for a blue (kappa = 0.5 cm^2 g^-1) kilonova, and Mej < 0.04Msun for a red (kappa = 5-10 cm^2 g^-1) kilonova. Our observations emphasize the key role of large-aperture telescopes and wide-field imagers such as CFHT MegaCam in enabling deep searches for electromagnetic counterparts to gravitational wave events.
Gravitational waves have been detected from a binary neutron star merger event, GW170817. The detection of electromagnetic radiation from the same source has shown that the merger occurred in the outskirts of the galaxy NGC 4993, at a distance of 40 megaparsecs from Earth. We report the detection of a counterpart radio source that appears 16 days after the event, allowing us to diagnose the energetics and environment of the merger. The observed radio emission can be explained by either a collimated ultra-relativistic jet viewed off-axis, or a cocoon of mildly relativistic ejecta. Within 100 days of the merger, the radio light curves will distinguish between these models and very long baseline interferometry will have the capability to directly measure the angular velocity and geometry of the debris.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا