ﻻ يوجد ملخص باللغة العربية
We investigate the geometry of the graphs of nonseparating curves for surfaces of finite positive genus with potentially infinitely many punctures. This graph has infinite diameter and is known to be Gromov hyperbolic by work of the author. We study finite covers between such surfaces and show that lifts of nonseparating curves to the nonseparating curve graph of the cover span quasiconvex subgraphs which are infinite diameter and not coarsely equal to the nonseparating curve graph of the cover. In the finite type case, we also reprove a theorem of Hamenst{a}dt identifying the Gromov boundary with the space of ending laminations on full genus subsurfaces. We introduce several tools based around the analysis of bicorn curves and laminations which may be of independent interest for studying the geometry of nonseparating curve graphs of infinite type surfaces and their boundaries.
We study relations between maps between relatively hyperbolic groups/spaces and quasisymmetric embeddings between their boundaries. More specifically, we establish a correspondence between (not necessarily coarsely surjective) quasi-isometric embeddi
Let $S_g$ be a closed orientable surface of genus $g geq 2$ and $C$ a simple closed nonseparating curve in $F$. Let $t_C$ denote a left handed Dehn twist about $C$. A textit{fractional power} of $t_C$ of textit{exponent} $fraction{ell}{n}$ is an $h i
The Morse boundary of a proper geodesic metric space is designed to encode hypberbolic-like behavior in the space. A key property of this boundary is that a quasi-isometry between two such spaces induces a homeomorphism on their Morse boundaries. In
Given two finite covers $p: X to S$ and $q: Y to S$ of a connected, oriented, closed surface $S$ of genus at least $2$, we attempt to characterize the equivalence of $p$ and $q$ in terms of which curves lift to simple curves. Using Teichmuller theory
We study direct limits of embedded Cantor sets and embedded sier curves. We show that under appropriate conditions on the embeddings, all limits of Cantor spaces give rise to homeomorphic spaces, called $omega$-Cantor spaces, and similarly, all limit