ترغب بنشر مسار تعليمي؟ اضغط هنا

Geometry of the graphs of nonseparating curves: covers and boundaries

115   0   0.0 ( 0 )
 نشر من قبل Alexander Rasmussen
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the geometry of the graphs of nonseparating curves for surfaces of finite positive genus with potentially infinitely many punctures. This graph has infinite diameter and is known to be Gromov hyperbolic by work of the author. We study finite covers between such surfaces and show that lifts of nonseparating curves to the nonseparating curve graph of the cover span quasiconvex subgraphs which are infinite diameter and not coarsely equal to the nonseparating curve graph of the cover. In the finite type case, we also reprove a theorem of Hamenst{a}dt identifying the Gromov boundary with the space of ending laminations on full genus subsurfaces. We introduce several tools based around the analysis of bicorn curves and laminations which may be of independent interest for studying the geometry of nonseparating curve graphs of infinite type surfaces and their boundaries.

قيم البحث

اقرأ أيضاً

We study relations between maps between relatively hyperbolic groups/spaces and quasisymmetric embeddings between their boundaries. More specifically, we establish a correspondence between (not necessarily coarsely surjective) quasi-isometric embeddi ngs between relatively hyperbolic groups/spaces that coarsely respect peripherals, and quasisymmetric embeddings between their boundaries satisfying suitable conditions. Further, we establish a similar correspondence regarding maps with at most polynomial distortion. We use this to characterise groups which are hyperbolic relative to some collection of virtually nilpotent subgroups as exactly those groups which admit an embedding into a truncated real hyperbolic space with at most polynomial distortion, generalising a result of Bonk and Schramm for hyperbolic groups.
Let $S_g$ be a closed orientable surface of genus $g geq 2$ and $C$ a simple closed nonseparating curve in $F$. Let $t_C$ denote a left handed Dehn twist about $C$. A textit{fractional power} of $t_C$ of textit{exponent} $fraction{ell}{n}$ is an $h i n Mod(S_g)$ such that $h^n = t_C^{ell}$. Unlike a root of a $t_C$, a fractional power $h$ can exchange the sides of $C$. We derive necessary and sufficient conditions for the existence of both side-exchanging and side-preserving fractional powers. We show in the side-preserving case that if $gcd(ell,n) = 1$, then $h$ will be isotopic to the $ell^{th}$ power of an $n^{th}$ root of $t_C$ and that $n leq 2g+1$. In general, we show that $n leq 4g$, and that side-preserving fractional powers of exponents $fraction{2g}{2g+2}$ and $fraction{2g}{4g}$ always exist. For a side-exchanging fractional power of exponent $fraction{ell}{2n}$, we show that $2n geq 2g+2$, and that side-exchanging fractional powers of exponent $fraction{2g+2}{4g+2}$ and $fraction{4g+1}{4g+2}$ always exist. We give a complete listing of certain side-preserving and side-exchanging fractional powers on $S_5$.
The Morse boundary of a proper geodesic metric space is designed to encode hypberbolic-like behavior in the space. A key property of this boundary is that a quasi-isometry between two such spaces induces a homeomorphism on their Morse boundaries. In this paper we investigate when the converse holds. We prove that for $X, Y$ proper, cocompact spaces, a homeomorphism between their Morse boundaries is induced by a quasi-isometry if and only if the homeomorphism is quasi-mobius and 2-stable.
Given two finite covers $p: X to S$ and $q: Y to S$ of a connected, oriented, closed surface $S$ of genus at least $2$, we attempt to characterize the equivalence of $p$ and $q$ in terms of which curves lift to simple curves. Using Teichmuller theory and the complex of curves, we show that two regular covers $p$ and $q$ are equivalent if for any closed curve $gamma subset S$, $gamma$ lifts to a simple closed curve on $X$ if and only if it does to $Y$. When the covers are abelian, we also give a characterization of equivalence in terms of which powers of simple closed curves lift to closed curves.
We study direct limits of embedded Cantor sets and embedded sier curves. We show that under appropriate conditions on the embeddings, all limits of Cantor spaces give rise to homeomorphic spaces, called $omega$-Cantor spaces, and similarly, all limit s of sier curves give homeomorphic spaces, called to $omega$-sier curves. We then show that the former occur naturally as Morse boundaries of right-angled Artin groups and fundamental groups of non-geometric graph manifolds, while the latter occur as Morse boundaries of fundamental groups of finite-volume, cusped hyperbolic 3-manifolds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا