ﻻ يوجد ملخص باللغة العربية
We report generation of cascaded rotational Raman scattering up to 58th orders in coherently excited CO_2 molecules. The high-order Raman scattering, which produces a quasiperiodic frequency comb with more than 600 sidebands, is obtained using an intense femtosecond laser to impulsively excite rotational coherence and the femtosecond-laser-induced N_2^+ lasing to generate cascaded Raman signals. The novel configuration allows this experiment to be performed with a single femtosecond laser beam at free-space standoff locations. It is revealed that the efficient spectral extension of Raman signals is attributed to the specific spectra-temporal structures of N_2^+ lasing, the ideal spatial overlap of femtosecond laser and N2+ lasing, and the guiding effect of molecular alignment. The Raman spectrum extending above 2000 cm^-1 naturally corresponds to a femtosecond pulse train due to the periodic revivals of molecular rotational wavepackets.
Dynamics of femtosecond pulses with the telecom carrier wavelength is investigated numerically in a subwavelength layer of an indium tin oxide (ITO) epsilon-near-zero (ENZ) material with high dispersion and high nonlinearity. Due to the subwavelength
We compute molecular continuum orbitals in the single center expansion scheme. We then employ these orbitals to obtain molecular Auger rates and single-photon ionization cross sections to study the interaction of N2 with Free-Electron-Laser (FEL) pul
We report on an investigation of simultaneous generation of several narrow-bandwidth laser-like coherent emissions from nitrogen molecular ions ( ) produced in intense mid-infrared laser fields. With systematic examinations on the dependences of cohe
Quantum cascade lasers (QCL) have revolutionized the generation of mid-infrared light. Yet, the ultrafast carrier transport in mid-infrared QCLs has so far constituted a seemingly insurmountable obstacle for the formation of ultrashort light pulses.
A quasi-classical model (QCM) of molecular dynamics in intense femtosecond laser fields has been developed, and applied to a study of the effect of an ultrashort `control pulse on the vibrational motion of a deuterium molecular ion in its ground elec