ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Gas Content, Star Formation Efficiency, and Environmental Quenching of Massive Galaxies in Proto-Clusters at z~2.0-2.5

102   0   0.0 ( 0 )
 نشر من قبل Jorge Zavala
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present ALMA Band 6 (nu=233GHz, lambda=1.3mm) continuum observations towards 68 normal star-forming galaxies within two Coma-like progenitor structures at z=2.10 and 2.47, from which ISM masses are derived, providing the largest census of molecular gas mass in overdense environments at these redshifts. Our sample comprises galaxies with a stellar mass range of 1x10^9M_sun - 4x10^11M_sun with a mean M_*~6x10^10M_sun. Combining these measurements with multiwavelength observations and SED modeling, we characterize the gas mass fraction and the star formation efficiency, and infer the impact of the environment on galaxies evolution. Most of our detected galaxies (~70%) have star formation efficiencies and gas fractions similar to those found for coeval field galaxies and in agreement with the field scaling relations. However, we do find that the proto-clusters contain an increased fraction of massive, gas-poor galaxies, with low gas fractions (f_gas<6-10%) and red rest-frame ultraviolet/optical colors typical of post-starburst and passive galaxies. The relatively high abundance of passive galaxies suggests an accelerated evolution of massive galaxies in proto-cluster environments. The large fraction of quenched galaxies in these overdense structures also implies that environmental quenching takes place during the early phases of cluster assembly, even before virialization. From our data, we derive a quenching efficiency of E_q~0.45 and an upper limit on the quenching timescale of T_q<1Gyr.



قيم البحث

اقرأ أيضاً

We present a detailed study of the molecular gas content and stellar population properties of three massive galaxies at 1 < z < 1.3 that are in different stages of quenching. The galaxies were selected to have a quiescent optical/near-infrared spectr al energy distribution and a relatively bright emission at 24 micron, and show remarkably diverse properties. CO emission from each of the three galaxies is detected in deep NOEMA observations, allowing us to derive molecular gas fractions Mgas/Mstar of 13-23%. We also reconstruct the star formation histories by fitting models to the observed photometry and optical spectroscopy, finding evidence for recent rejuvenation in one object, slow quenching in another, and rapid quenching in the third system. To better constrain the quenching mechanism we explore the depletion times for our sample and other similar samples at z~0.7 from the literature. We find that the depletion times are highly dependent on the method adopted to measure the star formation rate: using the UV+IR luminosity we obtain depletion times about 6 times shorter than those derived using dust-corrected [OII] emission. When adopting the star formation rates from spectral fitting, which are arguably more robust, we find that recently quenched galaxies and star-forming galaxies have similar depletion times, while older quiescent systems have longer depletion times. These results offer new, important constraints for physical models of galaxy quenching.
We develop a simple analytical criterion to investigate the role of the environment on the onset of star formation. We will consider the main external agents that influence the star formation (i.e. ram pressure, tidal interaction, Rayleigh-Taylor and Kelvin-Helmholtz instabilities) in a spherical galaxy moving through an external environment. The theoretical framework developed here has direct applications to the cases of dwarf galaxies in galaxy clusters and dwarf galaxies orbiting our Milky Way system, as well as any primordial gas-rich cluster of stars orbiting within its host galaxy. We develop an analytic formalism to solve the fluid dynamics equations in a non-inertial reference frame mapped with spherical coordinates. The two-fluids instability at the interface between a stellar system and its surrounding hotter and less dense environment is related to the star formation processes through a set of differential equations. The solution presented here is quite general, allowing us to investigate most kinds of orbits allowed in a gravitationally bound system of stars in interaction with a major massive companion. We present an analytical criterion to elucidate the dependence of star formation in a spherical stellar system (as a dwarf galaxy or a globular cluster) on its surrounding environment useful in theoretical interpretations of numerical results as well as observational applications. We show how spherical coordinates naturally enlighten the interpretation of the two-fluids instability in a geometry that directly applies to astrophysical case. This criterion predicts the threshold value for the onset of star formation in a mass vs. size space for any orbit of interest. Moreover, we show for the first time the theoretical dependencies of the different instability phenomena acting on a system in a fully analytical way.
Assessments of the cold-gas reservoir in galaxies are a cornerstone for understanding star-formation processes and the role of feedback and baryonic cycling in galaxy evolution. Here we exploit a sample of 392 galaxies (dubbed MAGMA, Metallicity and Gas for Mass Assembly), presented in a recent paper, to quantify molecular and atomic gas properties across a broad range in stellar mass, Mstar, from $sim 10^7 - 10^{11}$ Msun. First, we find the metallicity ($Z$) dependence of alpha_CO to be shallower than previous estimates, with alpha_CO$propto (Z/Z_odot)^{-1.55}$. Second, molecular gas mass MH2 is found to be strongly correlated with Mstar and star-formation rate (SFR), enabling predictions of MH2 good to within $sim$0.2 dex. The behavior of atomic gas mass MHI in MAGMA scaling relations suggests that it may be a third, independent variable that encapsulates information about the circumgalactic environment and gas accretion. If Mgas is considered to depend on MHI, together with Mstar and SFR, we obtain a relation that predicts Mgas to within $sim$0.05 dex. Finally, the analysis of depletion times and the scaling of MHI/Mstar and MH2/Mstar over three different mass bins suggests that the partition of gas and the regulation of star formation through gas content depends on the mass regime. Dwarf galaxies tend to be overwhelmed by (HI) accretion, while for galaxies in the intermediate Mstar gas-equilibrium bin, star formation proceeds apace with gas availability. In the most massive gas-poor, bimodality galaxies, HI does not apparently participate in star formation, although it generally dominates in mass over H2. Our results confirm that atomic gas plays a key role in baryonic cycling, and is a fundamental ingredient for current and future star formation, especially in dwarf galaxies. (abridged for arXiv)
178 - R. Nordon , D. Lutz , L. Shao 2010
The star formation rate (SFR) is a key parameter in the study of galaxy evolution. The accuracy of SFR measurements at z~2 has been questioned following a disagreement between observations and theoretical models. The latter predict SFRs at this redsh ift that are typically a factor 4 or more lower than the measurements. We present star-formation rates based on calorimetric measurements of the far-infrared (FIR) luminosities for massive 1.5<z<2.5, normal star-forming galaxies (SFGs), which do not depend on extinction corrections and/or extrapolations of spectral energy distributions. The measurements are based on observations in GOODS-N with the Photodetector Array Camera & Spectrometer (PACS) onboard Herschel, as part of the PACS Evolutionary Probe (PEP) project, that resolve for the first time individual SFGs at these redshifts at FIR wavelengths. We compare FIR-based SFRs to the more commonly used 24 micron and UV SFRs. We find that SFRs from 24 micron alone are higher by a factor of ~4-7.5 than the true SFRs. This overestimation depends on luminosity: gradually increasing for log L(24um)>12.2 L_sun. The SFGs and AGNs tend to exhibit the same 24 micron excess. The UV SFRs are in closer agreement with the FIR-based SFRs. Using a Calzetti UV extinction correction results in a mean excess of up to 0.3 dex and a scatter of 0.35 dex from the FIR SFRs. The previous UV SFRs are thus confirmed and the mean excess, while narrowing the gap, is insufficient to explain the discrepancy between the observed SFRs and simulation predictions.
Using the VLA and ALMA, we have obtained CO(2-1), [C II], [N II] line emission and multiple dust continuum measurements in a sample of normal galaxies at $z=5-6$. We report the highest redshift detection of low-$J$ CO emission from a Lyman Break Gala xy, at $zsim5.7$. The CO line luminosity implies a massive molecular gas reservoir of $(1.3pm0.3)(alpha_{rm CO}/4.5,M_odot$ (K km s$^{-1}$ pc$^2)^{-1})times10^{11},M_odot$, suggesting low star formation efficiency, with a gas depletion timescale of order $sim$1 Gyr. This efficiency is much lower than traditionally observed in $zgtrsim5$ starbursts, indicating that star forming conditions in Main Sequence galaxies at $zsim6$ may be comparable to those of normal galaxies probed up to $zsim3$ to-date, but with rising gas fractions across the entire redshift range. We also obtain a deep CO upper limit for a Main Sequence galaxy at $zsim5.3$ with $sim3$ times lower SFR, perhaps implying a high $alpha_{rm CO}$ conversion factor, as typically found in low metallicity galaxies. For a sample including both CO targets, we also find faint [N II] 205$,mu$m emission relative to [C II] in all but the most IR-luminous normal galaxies at $z=5-6$, implying more intense or harder radiation fields in the ionized gas relative to lower redshift. These radiation properties suggest that low metallicity may be common in typical $sim$10$^{10},M_odot$ galaxies at $z=5-6$. While a fraction of Main Sequence star formation in the first billion years may take place in conditions not dissimilar to lower redshift, lower metallicity may affect the remainder of the population.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا