ﻻ يوجد ملخص باللغة العربية
Using a Milky Way double neutron star (DNS) merger rate of 210 Myr$^{-1}$, as derived by the Laser Interferometer Gravitational-Wave Observatory (LIGO), we demonstrate that the Laser Interferometer Space Antenna (LISA) will detect on average 240 (330) DNSs within the Milky Way for a 4-year (8-year) mission with a signal-to-noise ratio greater than 7. Even adopting a more pessimistic rate of 42 Myr$^{-1}$, as derived by the population of Galactic DNSs, we find a significant detection of 46 (65) Milky Way DNSs. These DNSs can be leveraged to constrain formation scenarios. In particular, traditional NS-discovery methods using radio telescopes are unable to detect DNSs with $P_{rm orb}$ $lesssim$1 hour (merger times $lesssim$10 Myr). If a fast-merging channel exists that forms DNSs at these short orbital periods, LISA affords, perhaps, the only opportunity to observationally characterize these systems; we show that toy models for possible formation scenarios leave unique imprints on DNS orbital eccentricities, which may be measured by LISA for values as small as $sim$10$^{-2}$.
Double neutron star (DNS) systems represent extreme physical objects and the endpoint of an exotic journey of stellar evolution and binary interactions. Large numbers of DNS systems and their mergers are anticipated to be discovered using the Square-
We report the discovery and initial follow-up of a double neutron star (DNS) system, PSR J1946$+$2052, with the Arecibo L-Band Feed Array pulsar (PALFA) survey. PSR J1946$+$2052 is a 17-ms pulsar in a 1.88-hour, eccentric ($e , =, 0.06$) orbit with a
We report here the Einstein@Home discovery of PSR J1913+1102, a 27.3-ms pulsar found in data from the ongoing Arecibo PALFA pulsar survey. The pulsar is in a 4.95-hr double neutron star (DNS) system with an eccentricity of 0.089. From radio timing wi
The detection of the unusually heavy binary neutron star merger GW190425 marked a stark contrast to the mass distribution from known Galactic millisecond pulsars in neutron star binaries and gravitational-wave source GW170817. We suggest here a forma
Compact neutron star binary systems are produced from binary massive stars through stellar evolution involving up to two supernova explosions. The final stages in the formation of these systems have not been directly observed. We report the discovery