ﻻ يوجد ملخص باللغة العربية
In this paper we show that an equivalence between Horndeski and beyond Horndeski theories and general relativity with an effective imperfect fluid can be formally established. The formal equivalence is discussed for several particular cases of interest. Working in the cosmological framework, it is shown that, while the effective stress-energy tensor of viable Horndeski theories is formally equivalent to that of an imperfect fluid with anisotropic stresses and vanishing heat flux vector, the effective stress-energy tensor of beyond Horndeski theories is equivalent to the one of a perfect fluid instead.
The Horndeski theories are extended into the Lovelock gravity theory. When the canonical scalar field is uniquely kinetically coupled to the Lovelock tensors, it is named after Lovelock scalar field. The Lovelock scalar field model is a subclass of t
The gravitational-wave event GW170817 from a binary neutron star merger together with the electromagnetic counterpart showed that the speed of gravitational waves $c_t$ is very close to that of light for the redshift $z<0.009$. This places tight cons
We study the structure of scalar-tensor theories of gravity based on derivative couplings between the scalar and the matter degrees of freedom introduced through an effective metric. Such interactions are classified by their tensor structure into con
We investigate the propagation of primordial gravitational waves within the context of the Horndeski theories, for this, we present a generalized transfer function quantifying the sub-horizon evolution of gravitational waves modes after they enter th
Determining the most general, consistent scalar tensor theory of gravity is important for building models of inflation and dark energy. In this work we investigate the number of degrees of freedom present in the theory of beyond Horndeski. We discuss