ترغب بنشر مسار تعليمي؟ اضغط هنا

Role of U$_{A}$(1) breaking term in dynamical chiral symmetry breaking of chiral effective theories

84   0   0.0 ( 0 )
 نشر من قبل Daisuke Jido
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The spontaneous breaking of chiral symmetry is examined by chiral effective theories, such as the linear sigma model and the Nambu Jona-Lasinio (NJL) model. Indicating that sufficiently large contribution of the UA(1) anomaly can break chiral symmetry spontaneously, we discuss such anomaly driven symmetry breaking and its implication. We derive a mass relation among the SU(3) flavor singlet mesons, eta0 and sigma0, in the linear sigma model to be satisfied for the anomaly driven symmetry breaking in the chiral limit, and find that it is also supported in the NJL model. With the explicit breaking of chiral symmetry, we find that the chiral effective models reproducing the observed physical quantities suggest that the sigma0 meson regarded as the quantum fluctuation of the chiral condensate should have a mass smaller than an order of 800 MeV when the anomaly driven symmetry breaking takes place.

قيم البحث

اقرأ أيضاً

157 - Thomas Appelquist 1997
We compare gap equation predictions for the spontaneous breaking of global symmetries in supersymmetric Yang-Mills theory to nonperturbative results from holomorphic effective action techniques. In the theory without matter fields, both approaches de scribe the formation of a gluino condensate. With $N_f$ flavors of quark and squark fields, and with $N_f$ below a certain critical value, the coupled gap equations have a solution for quark and gluino condensate formation, corresponding to breaking of global symmetries and of supersymmetry. This appears to disagree with the newer nonperturbative techniques, but the reliability of gap equations in this context and whether the solution represents the ground state remain unclear.
182 - Edward Shuryak 2014
We start with the relation between the chiral symmetry breaking and gauge field topology. New lattice result further enhance the notion of Zero Mode Zone, a very narrow strip of states with quasizero Dirac eigenvalues. Then we move to the issue of or igin of mass and Brown-RHo scaling: a number of empirical facts contradicts to the idea that masses of quarks and such hadrons as $rho,N$ decrease near $T_c$. We argue that while at $T=0$ the main contribution to the effective quark mass is chirally odd $m_{snchi}$, near $T_c$ it rotates to chirally-even component $m_chi$, because infinite clusters of topological solitons gets split into finite ones. Recent progress in understanding of topology require introduction of nonzero holonomy $<A_0> eq 0$, which splits instantons into $N_c$ (anti)selfdual instanton-dyons. Qualitative progress, as well as first numerical studios of the dyon ensemble are reported. New connections between chiral symmetry breaking and confinement are recently understood, since instanton-dyons generates holonomy potential with a minimum at confining value, if the ensemble is dense enough.
We demonstrate that $SO(N_{c})$ gauge theories with matter fields in the vector representation confine due to monopole condensation and break the $SU(N_{F})$ chiral symmetry to $SO(N_{F})$ via the quark bilinear. Our results are obtained by perturbin g the ${cal N}=1$ supersymmetric theory with anomaly-mediated supersymmetry breaking.
We extend earlier studies of transverse Ward-Fradkin-Green-Takahashi identities in QED, their usefulness to constrain the transverse fermion-boson vertex and their importance for multiplicative renormalizability, to the equivalent gauge identities in QCD. To this end, we consider transverse Slavnov-Taylor identities that constrain the transverse quark-gluon vertex and derive its eight associated scalar form factors. The complete vertex can be expressed in terms of the quarks mass and wave-renormalization functions, the ghost-dressing function, the quark-ghost scattering amplitude and a set of eight form factors. The latter parametrize the hitherto unknown nonlocal tensor structure in the transverse Slavnov-Taylor identity which arises from the Fourier transform of a four-point function involving a Wilson line in coordinate space. We determine the functional form of these eight form factors with the constraints provided by the Bashir-Bermudez vertex and study the effects of this novel vertex on the quark in the Dyson-Schwinger equation using lattice QCD input for the gluon and ghost propagators. We observe significant dynamical chiral symmetry breaking and a mass gap that leads to a constituent mass of the order of 500 MeV for the light quarks. The flavor dependence of the mass and wave-renormalization functions as well as their analytic behavior on the complex momentum plane is studied and as an application we calculate the quark condensate and the pions weak decay constant in the chiral limit. Both are in very good agreement with their reference values.
We project onto the light-front the pions Poincare-covariant Bethe-Salpeter wave-function, obtained using two different approximations to the kernels of QCDs Dyson-Schwinger equations. At an hadronic scale both computed results are concave and signif icantly broader than the asymptotic distribution amplitude, phi_pi^{asy}(x)=6 x(1-x); e.g., the integral of phi_pi(x)/phi_pi^{asy}(x) is 1.8 using the simplest kernel and 1.5 with the more sophisticated kernel. Independent of the kernels, the emergent phenomenon of dynamical chiral symmetry breaking is responsible for hardening the amplitude.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا