ﻻ يوجد ملخص باللغة العربية
The spontaneous breaking of chiral symmetry is examined by chiral effective theories, such as the linear sigma model and the Nambu Jona-Lasinio (NJL) model. Indicating that sufficiently large contribution of the UA(1) anomaly can break chiral symmetry spontaneously, we discuss such anomaly driven symmetry breaking and its implication. We derive a mass relation among the SU(3) flavor singlet mesons, eta0 and sigma0, in the linear sigma model to be satisfied for the anomaly driven symmetry breaking in the chiral limit, and find that it is also supported in the NJL model. With the explicit breaking of chiral symmetry, we find that the chiral effective models reproducing the observed physical quantities suggest that the sigma0 meson regarded as the quantum fluctuation of the chiral condensate should have a mass smaller than an order of 800 MeV when the anomaly driven symmetry breaking takes place.
We compare gap equation predictions for the spontaneous breaking of global symmetries in supersymmetric Yang-Mills theory to nonperturbative results from holomorphic effective action techniques. In the theory without matter fields, both approaches de
We start with the relation between the chiral symmetry breaking and gauge field topology. New lattice result further enhance the notion of Zero Mode Zone, a very narrow strip of states with quasizero Dirac eigenvalues. Then we move to the issue of or
We demonstrate that $SO(N_{c})$ gauge theories with matter fields in the vector representation confine due to monopole condensation and break the $SU(N_{F})$ chiral symmetry to $SO(N_{F})$ via the quark bilinear. Our results are obtained by perturbin
We extend earlier studies of transverse Ward-Fradkin-Green-Takahashi identities in QED, their usefulness to constrain the transverse fermion-boson vertex and their importance for multiplicative renormalizability, to the equivalent gauge identities in
We project onto the light-front the pions Poincare-covariant Bethe-Salpeter wave-function, obtained using two different approximations to the kernels of QCDs Dyson-Schwinger equations. At an hadronic scale both computed results are concave and signif