ترغب بنشر مسار تعليمي؟ اضغط هنا

Modelling X-ray RMS spectra I: intrinsically variable AGN

109   0   0.0 ( 0 )
 نشر من قبل Michael Parker
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present simple XSPEC models for fitting excess variance spectra of AGN. Using a simple Monte-Carlo approach, we simulate a range of spectra corresponding to physical parameters varying, then calculate the resulting variance spectra. Starting from a variable power-law, we build up a set of models corresponding to the different physical processes that can affect the final excess variance spectrum. We show that the complex excess variance spectrum of IRAS 13224-3809 can be well described by such an intrinsic variability model, where the power-law variability is damped by relativistic reflection and enhanced by an ultra fast outflow. The reflection flux is correlated with that of the power-law, but not perfectly. We argue that this correlation is stronger at high frequencies, where reverberation lags are detected, while excess variance spectra are typically dominated by low frequency variability.



قيم البحث

اقرأ أيضاً

158 - L. Harer , M. L. Parker , A. Joyce 2020
We present an improved model for excess variance spectra describing ultra-fast outflows and successfully apply it to the luminous (L ~ 10^47 erg/s) low-redshift (z = 0.184) quasar PDS 456. The model is able to account well for the broadening of the s pike-like features of these outflows in the excess variance spectrum of PDS 456, by considering two effects: a correlation between the outflow velocity and the logarithmic X-ray flux and intrinsic Doppler broadening with v_int = 10^4 km/s. The models were generated by calculating the fractional excess variance of count spectra from a Monte Carlo simulation. We find evidence that the outflow in PDS 456 is structured, i.e., that there exist two or more layers with outflow velocities 0.27-0.30 c, 0.41-0.49 c, and 0.15-0.20 c for a possible third layer, which agrees well with the literature. We discuss the prospects of generally applicable models for excess variance spectra for detecting ultra-fast outflows and investigating their structure. We provide an estimate for the strength of the correlation between the outflow velocity and the logarithmic X-ray flux and investigate its validity.
61 - Poemwai Chainakun 2019
Characteristic signatures that X-ray reverberation from an extended corona can manifest in the observed PSD of AGN are investigated. The presence of two X-ray blobs illuminating an accretion disc can cause the interference between two reprocessing-ec ho components and produce distinct physical features in the PSD. The oscillatory structures (e.g., dips and humps) are seen but, contrarily to the lamp-post case, the strongest dip is not always the one at the lowest frequency. Instead, we find the frequency where the strongest dip is seen associates to the lower-source height while the lowest frequency where the first dip appears links with the upper-source height. This is because the reverberation timescales increase with the source height. Accurate modelling of the PSD then helps put constraints to the lower and upper limit of the corona extent. Furthermore, the reverberation signatures are less pronounced with increasing number of sources that do not produce reflection (e.g., additional X-rays from fast, relativistic outflows). The amplitude of the oscillations also depends on the amount of dilution contributed by the X-ray sources, thus encodes information about their relative brightness. Due to stronger dilutions, robust detection of these signatures with the current observations will become even more difficult if the corona is extended. Future observations made by Athena will enable us to fit these characteristics in statistically significant details, and to reveal the nature of the disc-corona system.
195 - S. Zane , A. Albano , R. Turolla 2011
We present the first detailed joint modelling of both the timing and spectral properties during the outburst decay of transient anomalous X-ray pulsars. We consider the two sources XTE J1810-197 and CXOU J164710.2-455216, and describe the source decl ine in the framework of a twisted magnetosphere model, using Monte Carlo simulations of magnetospheric scattering and mimicking localized heat deposition at the NS surface following the activity. Our results support a picture in which a limited portion of the star surface close to one of the magnetic poles is heated at the outburst onset. The subsequent evolution is driven both by the cooling/varying size of the heated cap and by a progressive untwisting of the magnetosphere.
108 - S. A. Sim 2010
We perform multi-dimensional radiative transfer simulations to compute spectra for a hydrodynamical simulation of a line-driven accretion disk wind from an active galactic nucleus. The synthetic spectra confirm expectations from parameterized models that a disk wind can imprint a wide variety of spectroscopic signatures including narrow absorption lines, broad emission lines and a Compton hump. The formation of these features is complex with contributions originating from many of the different structures present in the hydrodynamical simulation. In particular, spectral features are shaped both by gas in a successfully launched outflow and in complex flows where material is lifted out of the disk plane but ultimately falls back. We also confirm that the strong Fe Kalpha line can develop a weak, red-skewed line wing as a result of Compton scattering in the outflow. In addition, we demonstrate that X-ray radiation scattered and reprocessed in the flow has a pivotal part in both the spectrum formation and determining the ionization conditions in the wind. We find that scattered radiation is rather effective in ionizing gas which is shielded from direct irradiation from the central source. This effect likely makes the successful launching of a massive disk wind somewhat more challenging and should be considered in future wind simulations.
123 - S. A. Sim 2008
We use a multi-dimensional Monte Carlo code to compute X-ray spectra for a variety of active galactic nucleus (AGN) disk-wind outflow geometries. We focus on the formation of blue-shifted absorption features in the Fe K band and show that line featur es similar to those which have been reported in observations are often produced for lines-of-sight through disk-wind geometries. We also discuss the formation of other spectral features in highly ionized outflows. In particular we show that, for sufficiently high wind densities, moderately strong Fe K emission lines can form and that electron scattering in the flow may cause these lines to develop extended red wings. We illustrate the potential relevance of such models to the interpretation of real X-ray data by comparison with observations of a well-known AGN, Mrk 766.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا