ترغب بنشر مسار تعليمي؟ اضغط هنا

The Hulls of Matrix-Product Codes over Commutative Rings and Applications

111   0   0.0 ( 0 )
 نشر من قبل Abdulaziz Deajim
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Given a commutative ring $R$ with identity, a matrix $Ain M_{stimes l}(R)$, and $R$-linear codes $mathcal{C}_1, dots, mathcal{C}_s$ of the same length, this article considers the hull of the matrix-product codes $[mathcal{C}_1 dots mathcal{C}_s],A$. Consequently, it introduces various sufficient conditions under which $[mathcal{C}_1 dots mathcal{C}_s],A$ is a linear complementary dual (LCD) code. As an application, LCD matrix-product codes arising from torsion codes over finite chain rings are considered. Highlighting examples are also given.



قيم البحث

اقرأ أيضاً

In this paper, we clarify some aspects on LCD codes in the literature. We first prove that a non-free LCD code does not exist over finite commutative Frobenius local rings. We then obtain a necessary and sufficient condition for the existence of LCD code over finite commutative Frobenius rings. We later show that a free constacyclic code over finite chain ring is LCD if and only if it is reversible, and also provide a necessary and sufficient condition for a constacyclic code to be reversible over finite chain rings. We illustrate the minimum Lee-distance of LCD codes over some finite commutative chain rings and demonstrate the results with examples. We also got some new optimal $mathbb{Z}_4$ codes of different lengths {which are} cyclic LCD codes over $mathbb{Z}_4$.
In this paper, we construct several classes of maximum distance separable (MDS) codes via generalized Reed-Solomon (GRS) codes and extended GRS codes, where we can determine the dimensions of their Euclidean hulls or Hermitian hulls. It turns out tha t the dimensions of Euclidean hulls or Hermitian hulls of the codes in our constructions can take all or almost all possible values. As a consequence, we can apply our results to entanglement-assisted quantum error-correcting codes (EAQECCs) and obtain several new families of MDS EAQECCs with flexible parameters. The required number of maximally entangled states of these MDS EAQECCs can take all or almost all possible values. Moreover, several new classes of q-ary MDS EAQECCs of length n > q + 1 are also obtained.
In this paper we give the generalization of lifted codes over any finite chain ring. This has been done by using the construction of finite chain rings from $p$-adic fields. Further we propose a lattice construction from linear codes over finite chain rings using lifted codes.
This paper presents the first decoding algorithm for Gabidulin codes over Galois rings with provable quadratic complexity. The new method consists of two steps: (1) solving a syndrome-based key equation to obtain the annihilator polynomial of the err or and therefore the column space of the error, (2) solving a key equation based on the received word in order to reconstruct the error vector. This two-step approach became necessary since standard solutions as the Euclidean algorithm do not properly work over rings.
A structure theorem of the group codes which are relative projective for the subgroup $lbrace 1 rbrace$ of $G$ is given. With this, we show that all such relative projective group codes in a fixed group algebra $RG$ are in bijection to the chains of projective group codes of length $ell$ in the group algebra $mathbb{F}G$, where $mathbb{F}$ is the residue field of $R$. We use a given chain to construct the dual code in $RG$ and also derive the minimum Hamming weight as well as a lower bound of the minimum euclidean weight.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا