ترغب بنشر مسار تعليمي؟ اضغط هنا

Comparison of Accuracy and Scalability of Gauss-Newton and Alternating Least Squares for CP Decomposition

136   0   0.0 ( 0 )
 نشر من قبل Linjian Ma
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Alternating least squares is the most widely used algorithm for CP tensor decomposition. However, alternating least squares may exhibit slow or no convergence, especially when high accuracy is required. An alternative approach is to regard CP decomposition as a nonlinear least squares problem and employ Newton-like methods. Direct solution of linear systems involving an approximated Hessian is generally expensive. However, recent advancements have shown that use of an implicit representation of the linear system makes these methods competitive with alternating least squares. We provide the first parallel implementation of a Gauss-Newton method for CP decomposition, which iteratively solves linear least squares problems at each Gauss-Newton step. In particular, we leverage a formulation that employs tensor contractions for implicit matrix-vector products within the conjugate gradient method. The use of tensor contractions enables us to employ the Cyclops library for distributed-memory tensor computations to parallelize the Gauss-Newton approach with a high-level Python implementation. In addition, we propose a regularization scheme for Gauss-Newton method to improve convergence properties without any additional cost. We study the convergence of variants of the Gauss-Newton method relative to ALS for finding exact CP decompositions as well as approximate decompositions of real-world tensors. We evaluate the performance of sequential and parall

قيم البحث

اقرأ أيضاً

The alternating least squares algorithm for CP and Tucker decomposition is dominated in cost by the tensor contractions necessary to set up the quadratic optimization subproblems. We introduce a novel family of algorithms that uses perturbative corre ctions to the subproblems rather than recomputing the tensor contractions. This approximation is accurate when the factor matrices are changing little across iterations, which occurs when alternating least squares approaches convergence. We provide a theoretical analysis to bound the approximation error. Our numerical experiments demonstrate that the proposed pairwise perturbation algorithms are easy to control and converge to minima that are as good as alternating least squares. The experimental results show improvements of up to 3.1X with respect to state-of-the-art alternating least squares approaches for various model tensor problems and real datasets.
In this work, we study the tensor ring decomposition and its associated numerical algorithms. We establish a sharp transition of algorithmic difficulty of the optimization problem as the bond dimension increases: On one hand, we show the existence of spurious local minima for the optimization landscape even when the tensor ring format is much over-parameterized, i.e., with bond dimension much larger than that of the true target tensor. On the other hand, when the bond dimension is further increased, we establish one-loop convergence for alternating least square algorithm for tensor ring decomposition. The theoretical results are complemented by numerical experiments for both local minimum and one-loop convergence for the alternating least square algorithm.
97 - Philipp Trunschke 2021
We consider the problem of approximating a function in general nonlinear subsets of $L^2$ when only a weighted Monte Carlo estimate of the $L^2$-norm can be computed. Of particular interest in this setting is the concept of sample complexity, the num ber of samples that are necessary to recover the best approximation. Bounds for this quantity have been derived in a previous work and depend primarily on the model class and are not influenced positively by the regularity of the sought function. This result however is only a worst-case bound and is not able to explain the remarkable performance of iterative hard thresholding algorithms that is observed in practice. We reexamine the results of the previous paper and derive a new bound that is able to utilize the regularity of the sought function. A critical analysis of our results allows us to derive a sample efficient algorithm for the model set of low-rank tensors. The viability of this algorithm is demonstrated by recovering quantities of interest for a classical high-dimensional random partial differential equation.
Tensor decompositions, such as CANDECOMP/PARAFAC (CP), are widely used in a variety of applications, such as chemometrics, signal processing, and machine learning. A broadly used method for computing such decompositions relies on the Alternating Leas t Squares (ALS) algorithm. When the number of components is small, regardless of its implementation, ALS exhibits low arithmetic intensity, which severely hinders its performance and makes GPU offloading ineffective. We observe that, in practice, experts often have to compute multiple decompositions of the same tensor, each with a small number of components (typically fewer than 20), to ultimately find the best ones to use for the application at hand. In this paper, we illustrate how multiple decompositions of the same tensor can be fused together at the algorithmic level to increase the arithmetic intensity. Therefore, it becomes possible to make efficient use of GPUs for further speedups; at the same time the technique is compatible with many enhancements typically used in ALS, such as line search, extrapolation, and non-negativity constraints. We introduce the Concurrent ALS algorithm and library, which offers an interface to Matlab, and a mechanism to effectively deal with the issue that decompositions complete at different times. Experimental results on artificial and real datasets demonstrate a shorter time to completion due to increased arithmetic intensity.
375 - Hanyu Li , Yanjun Zhang 2020
With a greedy strategy to construct control index set of coordinates firstly and then choosing the corresponding column submatrix in each iteration, we present a greedy block Gauss-Seidel (GBGS) method for solving large linear least squares problem. Theoretical analysis demonstrates that the convergence factor of the GBGS method can be much smaller than that of the greedy randomized coordinate descent (GRCD) method proposed recently in the literature. On the basis of the GBGS method, we further present a pseudoinverse-free greedy block Gauss-Seidel method, which doesnt need to calculate the Moore-Penrose pseudoinverse of the column submatrix in each iteration any more and hence can be achieved greater acceleration. Moreover, this method can also be used for distributed implementations. Numerical experiments show that, for the same accuracy, our methods can far outperform the GRCD method in terms of the iteration number and computing time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا