ترغب بنشر مسار تعليمي؟ اضغط هنا

f-SAEM: A fast Stochastic Approximation of the EM algorithm for nonlinear mixed effects models

147   0   0.0 ( 0 )
 نشر من قبل Belhal Karimi
 تاريخ النشر 2019
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

The ability to generate samples of the random effects from their conditional distributions is fundamental for inference in mixed effects models. Random walk Metropolis is widely used to perform such sampling, but this method is known to converge slowly for medium dimensional problems, or when the joint structure of the distributions to sample is spatially heterogeneous. The main contribution consists of an independent Metropolis-Hastings (MH) algorithm based on a multidimensional Gaussian proposal that takes into account the joint conditional distribution of the random effects and does not require any tuning. Indeed, this distribution is automatically obtained thanks to a Laplace approximation of the incomplete data model. Such approximation is shown to be equivalent to linearizing the structural model in the case of continuous data. Numerical experiments based on simulated and real data illustrate the performance of the proposed methods. For fitting nonlinear mixed effects models, the suggested MH algorithm is efficiently combined with a stochastic approximation version of the EM algorithm for maximum likelihood estimation of the global parameters.



قيم البحث

اقرأ أيضاً

A new robust stochastic volatility (SV) model having Student-t marginals is proposed. Our process is defined through a linear normal regression model driven by a latent gamma process that controls temporal dependence. This gamma process is strategica lly chosen to enable us to find an explicit expression for the pairwise joint density function of the Student-t response process. With this at hand, we propose a composite likelihood (CL) based inference for our model, which can be straightforwardly implemented with a low computational cost. This is a remarkable feature of our Student-t SV process over existing SV models in the literature that involve computationally heavy algorithms for estimating parameters. Aiming at a precise estimation of the parameters related to the latent process, we propose a CL Expectation-Maximization algorithm and discuss a bootstrap approach to obtain standard errors. The finite-sample performance of our composite likelihood methods is assessed through Monte Carlo simulations. The methodology is motivated by an empirical application in the financial market. We analyze the relationship, across multiple time periods, between various US sector Exchange-Traded Funds returns and individual companies stock price returns based on our novel Student-t model. This relationship is further utilized in selecting optimal financial portfolios.
119 - Umberto Picchini 2016
A maximum likelihood methodology for the parameters of models with an intractable likelihood is introduced. We produce a likelihood-free version of the stochastic approximation expectation-maximization (SAEM) algorithm to maximize the likelihood func tion of model parameters. While SAEM is best suited for models having a tractable complete likelihood function, its application to moderately complex models is a difficult or even impossible task. We show how to construct a likelihood-free version of SAEM by using the synthetic likelihood paradigm. Our method is completely plug-and-play, requires almost no tuning and can be applied to both static and dynamic models. Four simulation studies illustrate the method, including a stochastic differential equation model, a stochastic Lotka-Volterra model and data from $g$-and-$k$ distributions. MATLAB code is available as supplementary material.
131 - Edouard Ollier 2021
Nonlinear Mixed effects models are hidden variables models that are widely used in many field such as pharmacometrics. In such models, the distribution characteristics of hidden variables can be specified by including several parameters such as covar iates or correlations which must be selected. Recent development of pharmacogenomics has brought averaged/high dimensional problems to the field of nonlinear mixed effects modeling for which standard covariates selection techniques like stepwise methods are not well suited. This work proposes to select covariates and correlation parameters using a penalized likelihood approach. The penalized likelihood problem is solved using a stochastic proximal gradient algorithm to avoid inner-outer iterations. Speed of convergence of the proximal gradient algorithm is improved by the use of component-wise adaptive gradient step sizes. The practical implementation and tuning of the proximal gradient algorithm is explored using simulations. Calibration of regularization parameters is performed by minimizing the Bayesian Information Criterion using particle swarm optimization, a zero order optimization procedure. The use of warm restart and parallelization allows to reduce significantly computing time. The performance of the proposed method compared to the traditional grid search strategy is explored using simulated data. Finally, an application to real data from two pharmacokinetics studies is provided, one studying an antifibrinolitic and the other studying an antibiotic.
This paper provides general matrix formulas for computing the score function, the (expected and observed) Fisher information and the $Delta$ matrices (required for the assessment of local influence) for a quite general model which includes the one pr oposed by Russo et al. (2009). Additionally, we also present an expression for the generalized leverage. The matrix formulation has a considerable advantage, since although the complexity of the postulated model, all general formulas are compact, clear and have nice forms.
The vast majority of models for the spread of communicable diseases are parametric in nature and involve underlying assumptions about how the disease spreads through a population. In this article we consider the use of Bayesian nonparametric approach es to analysing data from disease outbreaks. Specifically we focus on methods for estimating the infection process in simple models under the assumption that this process has an explicit time-dependence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا