ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-Consistent Effective Hamiltonian Theory for Fermionic Many Body Systems

161   0   0.0 ( 0 )
 نشر من قبل Hai-Ping Cheng
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using a separable many-body variational wavefunction, we formulate a self-consistent effective Hamiltonian theory for fermionic many-body system. The theory is applied to the two-dimensional Hubbard model as an example to demonstrate its capability and computational effectiveness. Most remarkably for the Hubbard model in 2-d, a highly unconventional quadruple-fermion non-Cooper-pair order parameter is discovered.



قيم البحث

اقرأ أيضاً

We propose a general variational fermionic many-body wavefunction that generates an effective Hamiltonian in a quadratic form, which can then be exactly solved. The theory can be constructed within the density functional theory framework, and a self- consistent scheme is proposed for solving the exact density functional theory. We apply the theory to structurally-disordered systems, symmetric and asymmetric Hubbard dimers, and the corresponding lattice models. The single fermion excitation spectra show a persistent gap due to the fermionic-entanglement-induced pairing condensate. For disordered systems, the density of states at the edge of the gap diverges in the thermodynamic limit, suggesting a topologically ordered phase. A sharp resonance is predicted as the gap is not dependent on the temperature of the system. For the symmetric Hubbard model, the gap for both half-filling and doped case suggests that the quantum phase transition between the antiferromagnetic and superconducting phases is continuous.
68 - Xindong Wang 2020
Recently Wang and Cheng proposed a self-consistent effective Hamiltonian theory (SCEHT) for many-body fermionic systems (Wang & Cheng, 2019). This paper attempts to provide a mathematical foundation to the formulation of the SCEHT that enables furthe r study of excited states of the system in a more systematic and theoretical manner. Gauge fields are introduced and correct total energy functional in relations to the coupling gauge field is given. We also provides a Monte-Carlo numerical scheme for the search of the ground state that goes beyond the SCEHT.
In the standard framework of self-consistent many-body perturbation theory, the skeleton series for the self-energy is truncated at a finite order $N$ and plugged into the Dyson equation, which is then solved for the propagator $G_N$. For two simple examples of fermionic models -- the Hubbard atom at half filling and its zero space-time dimensional simplified version -- we find that $G_N$ converges when $Ntoinfty$ to a limit $G_infty,$, which coincides with the exact physical propagator $G_{rm exact} ,$ at small enough coupling, while $G_infty eq G_{rm exact} ,$ at strong coupling. We also demonstrate that it is possible to discriminate between these two regimes thanks to a criterion which does not require the knowledge of $G_{rm exact} ,$, as proposed in [Rossi et al., PRB 93, 161102(R) (2016)].
92 - Rubem Mondaini , Zi Cai 2017
We study the statistical and dynamical aspects of a translation-invariant Hamiltonian, without quench disorder, as an example of the manifestation of the phenomenon of many-body localization. This is characterized by the breakdown of thermalization a nd by information preservation of initial preparations at long times. To realize this, we use quasi-periodic long-range interactions, which are now achievable in high-finesse cavity experiments, to find evidence suggestive of a divergent time-scale in which charge inhomogeneities in the initial state survive asymptotically. This is reminiscent of a glassy behavior, which appears in the ground-state of this system, being also present at infinite temperatures.
A powerful perspective in understanding non-equilibrium quantum dynamics is through the time evolution of its entanglement content. Yet apart from a few guiding principles for the entanglement entropy, to date, not much else is known about the refine d characters of entanglement propagation. Here, we unveil signatures of the entanglement evolving and information propagation out-of-equilibrium, from the view of entanglement Hamiltonian. As a prototypical example, we study quantum quench dynamics of a one-dimensional Bose-Hubbard model by means of time-dependent density-matrix renormalization group simulation. Before reaching equilibration, it is found that a current operator emerges in entanglement Hamiltonian, implying that entanglement spreading is carried by particle flow. In the long-time limit subsystem enters a steady phase, evidenced by the dynamic convergence of the entanglement Hamiltonian to the expectation of a thermal ensemble. Importantly, entanglement temperature of steady state is spatially independent, which provides an intuitive trait of equilibrium. We demonstrate that these features are consistent with predictions from conformal field theory. These findings not only provide crucial information on how equilibrium statistical mechanics emerges in many-body dynamics, but also add a tool to exploring quantum dynamics from perspective of entanglement Hamiltonian.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا