ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterization of precision premium in astrometry

65   0   0.0 ( 0 )
 نشر من قبل Fr Lin
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Precision premium, a concept in astrometry that was firstly presented by Pascu in 1994, initially means that the relative positional measurement of the Galilean satellites of Jupiter would be more accurate when their separations are small. Correspondingly, many observations have been obtained of these Galilean satellites since then. However, the exact range of the separation in which precision premium takes effect is not clear yet, not to say the variation of the precision with the separation. In this paper, the observations of open cluster M35 are used to study precision premium and the newest star catalogue Gaia DR2 is used in the data reduction. Our results show that precision premium does work in about less than 100 arcsecs for two concerned objects, and the relative positional precision can be well fitted by a sigmoidal function. Observations of Uranian satellites are also reduced as an example of precision premium.



قيم البحث

اقرأ أيضاً

72 - P. Bianchini 2019
The study of the kinematics of globular clusters (GCs) offers the possibility of unveiling their long term evolution and uncovering their yet unknown formation mechanism. Gaia DR2 has strongly revitalized this field and enabled the exploration of the 6D phase-space properties of Milky Way GCs, thanks to precision astrometry. However, to fully leverage on the power of precision astrometry, a thorough investigations of the data is required. In this contribution, we show that the study of the mean radial proper motion profiles of GCs offers an ideal benchmark to assess the presence of systematics in crowded fields. Our work demonstrates that systematics in Gaia DR2 for the closest 14 GCs are below the random measurement errors, reaching a precision of ~0.015 mas/yr for mean proper motion measurements. Finally, through the analysis of the tangential component of proper motions, we report the detection of internal rotation in a sample of ~50 GCs, and outline the implications of the presence of angular momentum for the formation mechanism of proto-GC. This result gives the first taste of the unparalleled power of Gaia DR2 for GCs science, in preparation for the subsequent data releases.
With the aim of paving the road for future accurate astrometry with MICADO at the European-ELT, we performed an astrometric study using two different but complementary approaches to investigate two critical components that contribute to the total ast rometric accuracy. First, we tested the predicted improvement in the astrometric measurements with the use of an atmospheric dispersion corrector (ADC) by simulating realistic images of a crowded Galactic globular cluster. We found that the positional measurement accuracy should be improved by up to ~2 mas with the ADC, making this component fundamental for high-precision astrometry. Second, we analysed observations of a globular cluster taken with the only currently available Multi-Conjugate Adaptive Optics assisted camera, GeMS/GSAOI at Gemini South. Making use of previously measured proper motions of stars in the field of view, we were able to model the distortions affecting the stellar positions. We found that they can be as large as ~200 mas, and that our best model corrects them to an accuracy of ~1 mas. We conclude that future astrometric studies with MICADO requires both an ADC and an accurate modelling of distortions to the field of view, either through an a-priori calibration or an a-posteriori correction.
Improved quantum sensing of photon wave-functions could provide high resolution observations in the optical benefiting numerous fields, including general relativity, dark matter studies, and cosmology. It has been recently proposed that stations in o ptical interferometers would not require a phase-stable optical link if instead sources of quantum-mechanically entangled pairs could be provided to them, potentially enabling hitherto prohibitively long baselines. A new refinement of this idea is developed, in which two photons from different sources are interfered at two separate and decoupled stations, requiring only a slow classical information link between them. We rigorously calculate the observables and contrast this new interferometric technique with the Hanbury Brown & Twiss intensity interferometry. We argue this technique could allow robust high-precision measurements of the relative astrometry of the two sources. A basic calculation suggests that angular precision on the order of 10 microarcsecond could be achieved in a single nights observation of two bright stars.
Astrometric detection and mass determination of Earth-mass exoplanets requires sub-microarcsec accuracy, which is theoretically possible with an imaging space telescope using field stars as an astrometric reference. The measurement must however overc ome astrometric distortions which are much larger than the photon noise limit. To address this issue, we propose to generate faint stellar diffraction spikes using a two-dimensional grid of regularly spaced small dark spots added to the surface of the primary mirror (PM). Accurate astrometric motion of the host star is obtained by comparing the position of the spikes to the background field stars. The spikes do not contribute to scattered light in the central part of the field and therefore allow unperturbed coronagraphic observation of the stars immediate surrounding. Because the diffraction spikes are created on the PM and imaged on the same focal plane detector as the background stars, astrometric distortions affect equally the diffraction spikes and the background stars, and are therefore calibrated. We describe the technique, detail how the data collected by the wide-field camera are used to derive astrometric motion, and identify the main sources of astrometric error using numerical simulations and analytical derivations. We find that the 1.4 m diameter telescope, 0.3 sq.deg field we adopt as a baseline design achieves 0.2 microarcsec single measurement astrometric accuracy. The diffractive pupil concept thus enables sub-microarcsec astrometry without relying on the accurate pointing, external metrology or high stability hardware required with previously proposed high precision astrometry concepts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا