ﻻ يوجد ملخص باللغة العربية
We present three simultaneous/quasi-simultaneous NuSTAR and Swift datasets of the black hole GRS 1716-249 in its hard intermediate state. The accretion disk in this state may have reached the innermost stable circular orbit, and the NuSTAR spectra show a broad relativistic iron line and a strong Compton hump. To measure the black hole spin, we construct a joint model consisting of a relativistic disk model kerrbb and a reflection model relxill, to fit the continuum and the reflection components, respectively. By applying this model to each dataset independently, a consistent result is obtained on the black hole spin and the disk inclination. The black hole spin is a* >~ 0.92, and the inclination angle (i) is around 40-50 degree, based on the measurements of all datasets. In the third dataset, a high black hole mass (M_BH) is strongly disfavored by the spectral fits. By unfreezing the black hole mass, we find a*>0.92, i=49.9^{+1.0}_{-1.3} degree and M_BH<8.0 Msun, at a 90% confidence level. Considering the lower limit derived from a previous optical constraint, M_BH is in a range of 4.9-8.0 Msun.
We present a detailed analysis of the spectral properties of the black hole transient GRS 1716-249, based on the archival Swift and NuSTAR observations taken during the outburst of this source in 2016-2017. The first six NuSTAR observations show that
The black hole transient GRS 1716-249 was monitored from the radio to the gamma-ray band during its 2016-2017 outburst. This paper focuses on the Spectral Energy Distribution (SED) obtained in 2017 February-March, when GRS 1716-249 was in a bright ha
The origins of X-ray and radio emissions during an X-ray binary outburst are comparatively better understood than those of ultraviolet, optical and infrared radiation. This is because multiple competing mechanisms peak in these mid-energy ranges. Asc
We present optical spectroscopy obtained with the GTC, VLT and SALT telescopes during the decline of the 2016-2017 outburst of the black hole candidate GRS 1716-249 (Nova Oph 1993). Our 18-epoch data set spans 6 months and reveals that the observatio
The continuum-fitting and the iron-line methods are currently the two leading techniques for measuring the spins of accreting black holes. In the past few years, these two methods have been developed for testing fundamental physics. In the present wo