ﻻ يوجد ملخص باللغة العربية
Multilayer networked systems are ubiquitous in nature and engineering, and the robustness of these systems against failures is of great interest. A main line of theoretical pursuit has been percolation induced cascading failures, where interdependence between network layers is conveniently and tacitly assumed to be symmetric. In the real world, interdependent interactions are generally asymmetric. To uncover and quantify the impact of asymmetry in interdependence on network robustness, we focus on percolation dynamics in double-layer systems and implement the following failure mechanism: once a node in a network layer fails, the damage it can cause depends not only on its position in the layer but also on the position of its counterpart neighbor in the other layer. We find that the characteristics of the percolation transition depend on the degree of asymmetry, where the striking phenomenon of a switch in the nature of the phase transition from first- to second-order arises. We derive a theory to calculate the percolation transition points in both network layers, as well as the transition switching point, with strong numerical support from synthetic and empirical networks. Not only does our work shed light upon the factors that determine the robustness of multilayer networks against cascading failures, but it also provides a scenario by which the system can be designed or controlled to reach a desirable level of resilience.
Robustness of routing policies for networks is a central problem which is gaining increased attention with a growing awareness to safeguard critical infrastructure networks against natural and man-induced disruptions. Routing under limited informatio
Non-Markovian spontaneous recovery processes with a time delay (memory) are ubiquitous in the real world. How does the non-Markovian characteristic affect failure propagation in complex networks? We consider failures due to internal causes at the nod
We propose a dynamical model for cascading failures in single-commodity network flows. In the proposed model, the network state consists of flows and activation status of the links. Network dynamics is determined by a, possibly state-dependent and ad
In complex networks, the failure of one or very few nodes may cause cascading failures. When this dynamical process stops in steady state, the size of the giant component formed by remaining un-failed nodes can be used to measure the severity of casc
In todays global economy, supply chain (SC) entities have become increasingly interconnected with demand and supply relationships due to the need for strategic outsourcing. Such interdependence among firms not only increases efficiency but also creat