ترغب بنشر مسار تعليمي؟ اضغط هنا

6-PACK: Category-level 6D Pose Tracker with Anchor-Based Keypoints

105   0   0.0 ( 0 )
 نشر من قبل Chen Wang
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present 6-PACK, a deep learning approach to category-level 6D object pose tracking on RGB-D data. Our method tracks in real-time novel object instances of known object categories such as bowls, laptops, and mugs. 6-PACK learns to compactly represent an object by a handful of 3D keypoints, based on which the interframe motion of an object instance can be estimated through keypoint matching. These keypoints are learned end-to-end without manual supervision in order to be most effective for tracking. Our experiments show that our method substantially outperforms existing methods on the NOCS category-level 6D pose estimation benchmark and supports a physical robot to perform simple vision-based closed-loop manipulation tasks. Our code and video are available at https://sites.google.com/view/6packtracking.



قيم البحث

اقرأ أيضاً

We propose a method of Category-level 6D Object Pose and Size Estimation (COPSE) from a single depth image, without external pose-annotated real-world training data. While previous works exploit visual cues in RGB(D) images, our method makes inferenc es based on the rich geometric information of the object in the depth channel alone. Essentially, our framework explores such geometric information by learning the unified 3D Orientation-Consistent Representations (3D-OCR) module, and further enforced by the property of Geometry-constrained Reflection Symmetry (GeoReS) module. The magnitude information of object size and the center point is finally estimated by Mirror-Paired Dimensional Estimation (MPDE) module. Extensive experiments on the category-level NOCS benchmark demonstrate that our framework competes with state-of-the-art approaches that require labeled real-world images. We also deploy our approach to a physical Baxter robot to perform manipulation tasks on unseen but category-known instances, and the results further validate the efficacy of our proposed model. Our videos are available in the supplementary material.
113 - Liu Liu , Han Xue , Wenqiang Xu 2021
Human life is populated with articulated objects. Current Category-level Articulation Pose Estimation (CAPE) methods are studied under the single-instance setting with a fixed kinematic structure for each category. Considering these limitations, we r eform this problem setting for real-world environments and suggest a CAPE-Real (CAPER) task setting. This setting allows varied kinematic structures within a semantic category, and multiple instances to co-exist in an observation of real world. To support this task, we build an articulated model repository ReArt-48 and present an efficient dataset generation pipeline, which contains Fast Articulated Object Modeling (FAOM) and Semi-Authentic MixEd Reality Technique (SAMERT). Accompanying the pipeline, we build a large-scale mixed reality dataset ReArtMix and a real world dataset ReArtVal. We also propose an effective framework ReArtNOCS that exploits RGB-D input to estimate part-level pose for multiple instances in a single forward pass. Extensive experiments demonstrate that the proposed ReArtNOCS can achieve good performance on both CAPER and CAPE settings. We believe it could serve as a strong baseline for future research on the CAPER task.
Prior work on 6-DoF object pose estimation has largely focused on instance-level processing, in which a textured CAD model is available for each object being detected. Category-level 6-DoF pose estimation represents an important step toward developin g robotic vision systems that operate in unstructured, real-world scenarios. In this work, we propose a single-stage, keypoint-based approach for category-level object pose estimation that operates on unknown object instances within a known category using a single RGB image as input. The proposed network performs 2D object detection, detects 2D keypoints, estimates 6-DoF pose, and regresses relative bounding cuboid dimensions. These quantities are estimated in a sequential fashion, leveraging the recent idea of convGRU for propagating information from easier tasks to those that are more difficult. We favor simplicity in our design choices: generic cuboid vertex coordinates, single-stage network, and monocular RGB input. We conduct extensive experiments on the challenging Objectron benchmark, outperforming state-of-the-art methods on the 3D IoU metric (27.6% higher than the MobilePose single-stage approach and 7.1% higher than the related two-stage approach).
In this paper, we focus on category-level 6D pose and size estimation from monocular RGB-D image. Previous methods suffer from inefficient category-level pose feature extraction which leads to low accuracy and inference speed. To tackle this problem, we propose a fast shape-based network (FS-Net) with efficient category-level feature extraction for 6D pose estimation. First, we design an orientation aware autoencoder with 3D graph convolution for latent feature extraction. The learned latent feature is insensitive to point shift and object size thanks to the shift and scale-invariance properties of the 3D graph convolution. Then, to efficiently decode category-level rotation information from the latent feature, we propose a novel decoupled rotation mechanism that employs two decoders to complementarily access the rotation information. Meanwhile, we estimate translation and size by two residuals, which are the difference between the mean of object points and ground truth translation, and the difference between the mean size of the category and ground truth size, respectively. Finally, to increase the generalization ability of FS-Net, we propose an online box-cage based 3D deformation mechanism to augment the training data. Extensive experiments on two benchmark datasets show that the proposed method achieves state-of-the-art performance in both category- and instance-level 6D object pose estimation. Especially in category-level pose estimation, without extra synthetic data, our method outperforms existing methods by 6.3% on the NOCS-REAL dataset.
Category-level 6D object pose and size estimation is to predict full pose configurations of rotation, translation, and size for object instances observed in single, arbitrary views of cluttered scenes. In this paper, we propose a new method of Dual P ose Network with refined learning of pose consistency for this task, shortened as DualPoseNet. DualPoseNet stacks two parallel pose decoders on top of a shared pose encoder, where the implicit decoder predicts object poses with a working mechanism different from that of the explicit one; they thus impose complementary supervision on the training of pose encoder. We construct the encoder based on spherical convolutions, and design a module of Spherical Fusion wherein for a better embedding of pose-sensitive features from the appearance and shape observations. Given no testing CAD models, it is the novel introduction of the implicit decoder that enables the refined pose prediction during testing, by enforcing the predicted pose consistency between the two decoders using a self-adaptive loss term. Thorough experiments on benchmarks of both category- and instance-level object pose datasets confirm efficacy of our designs. DualPoseNet outperforms existing methods with a large margin in the regime of high precision. Our code is released publicly at https://github.com/Gorilla-Lab-SCUT/DualPoseNet.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا