ﻻ يوجد ملخص باللغة العربية
Most existing AU detection works considering AU relationships are relying on probabilistic graphical models with manually extracted features. This paper proposes an end-to-end deep learning framework for facial AU detection with graph convolutional network (GCN) for AU relation modeling, which has not been explored before. In particular, AU related regions are extracted firstly, latent representations full of AU information are learned through an auto-encoder. Moreover, each latent representation vector is feed into GCN as a node, the connection mode of GCN is determined based on the relationships of AUs. Finally, the assembled features updated through GCN are concatenated for AU detection. Extensive experiments on BP4D and DISFA benchmarks demonstrate that our framework significantly outperforms the state-of-the-art methods for facial AU detection. The proposed framework is also validated through a series of ablation studies.
Attention mechanism has recently attracted increasing attentions in the field of facial action unit (AU) detection. By finding the region of interest of each AU with the attention mechanism, AU-related local features can be captured. Most of the exis
Spatio-temporal relations among facial action units (AUs) convey significant information for AU detection yet have not been thoroughly exploited. The main reasons are the limited capability of current AU detection works in simultaneously learning spa
This paper describes an approach to the facial action unit (AU) detection. In this work, we present our submission to the Field Affective Behavior Analysis (ABAW) 2021 competition. The proposed method uses the pre-trained JAA model as the feature ext
Current day pain assessment methods rely on patient self-report or by an observer like the Intensive Care Unit (ICU) nurses. Patient self-report is subjective to the individual and suffers due to poor recall. Pain assessment by manual observation is
Facial action unit (AU) detection in the wild is a challenging problem, due to the unconstrained variability in facial appearances and the lack of accurate annotations. Most existing methods depend on either impractical labor-intensive labeling or in