ﻻ يوجد ملخص باللغة العربية
We use a set of 45 simulated clusters with a wide mass range ($8times 10^{13} < M_{500}~[$M$_{odot}]~< 2times 10^{15}$) to investigate the effect of varying hydrodynamics flavours on cluster mass estimates. The cluster zooms were simulated using the same cosmological models as the BAHAMAS and C-EAGLE projects, leading to differences in both the hydrodynamic solvers and the subgrid physics but still producing clusters which broadly match observations. At the same mass resolution as BAHAMAS, for the most massive clusters ($M_{500} > 10^{15}$ M$_{odot}$), we find changes in the SPH method produce the greatest differences in the final halo, while the subgrid models dominate at lower mass. By calculating the mass of all of the clusters using different permutations of the pressure, temperature and density profiles, created with either the true simulated data or mock spectroscopic data, we find that the spectroscopic temperature causes a bias in the hydrostatic mass estimates which increases with the mass of the cluster, regardless of the SPH flavour used. For the most massive clusters, the estimated mass of the cluster using spectroscopic density and temperature profiles is found to be as low as 50 per cent of the true mass compared to $sim$ 90 per cent for low mass clusters. When including a correction for non-thermal pressure, the spectroscopic hydrostatic mass estimates are less biased on average and the mass dependence of the bias is reduced, although the scatter in the measurements does increase.
Galaxy clusters are the endpoints of structure formation and are continuously growing through the merging and accretion of smaller structures. Numerical simulations predict that a fraction of their energy content is not yet thermalized, mainly in the
Centrally located diffuse radio emission has been observed in both merging and non-merging galaxy clusters. Depending on their morphology and size, we distinguish between giant radio haloes, which occur predominantly in merging clusters, and mini hal
We compare X-ray and caustic mass profiles for a sample of 16 massive galaxy clusters. We assume hydrostatic equilibrium in interpreting the X-ray data, and use large samples of cluster members with redshifts as a basis for applying the caustic techn
(Abridged) The main purpose of this paper is to consider the contribution of all three non-thermal components to total mass measurements of galaxy clusters: cosmic rays, turbulence and magnetic pressures. To estimate the thermal pressure we used publ
Due to their late formation in cosmic history, clusters of galaxies are not fully in hydrostatic equilibrium and the gravitational pull of their mass at a given radius is expected not to be entirely balanced by the thermal gas pressure. Turbulence ma