ترغب بنشر مسار تعليمي؟ اضغط هنا

Intertwined magnetic, structural, and electronic transitions in V$_2$O$_3$

79   0   0.0 ( 0 )
 نشر من قبل Benjamin Frandsen
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a coordinated study of the paramagnetic-to-antiferromagnetic, rhombohedral-to-monoclinic, and metal-to-insulator transitions in thin-film specimens of the classic Mott insulator V$_2$O$_3$ using low-energy muon spin relaxation, x-ray diffraction, and nanoscale-resolved near-field infrared spectroscopic techniques. The measurements provide a detailed characterization of the thermal evolution of the magnetic, structural, and electronic phase transitions occurring in a wide temperature range, including quantitative measurements of the high- and low-temperature phase fractions for each transition. The results reveal a stable coexistence of the high- and low-temperature phases over a broad temperature range throughout the transition. Careful comparison of temperature dependence of the different measurements, calibrated by the resistance of the sample, demonstrates that the electronic, magnetic, and structural degrees of freedom remain tightly coupled to each other during the transition process. We also find evidence for antiferromagnetic fluctuations in the vicinity of the phase transition, highlighting the important role of the magnetic degree of freedom in the metal-insulator transition.

قيم البحث

اقرأ أيضاً

92 - R. C. Rai , J. Cao , S. Brown 2006
We use a combination of optical spectra, first principles calculations, and energy dependent magneto-optical measurements to elucidate the electronic structure and to study the phase diagram of Ni$_3$V$_2$O$_8$. We find a remarkable interplay of magn etic field and optical properties that reveals additional high magnetic field phases and an unexpected electronic structure which we associate with the strong magneto-dielectric couplings in this material over a wide energy range. Specifically, we observed several prominent magneto-dielectric effects that derive from changes in crystal field environment around Ni spine and cross-tie centers. This effect is consistent with a field-induced modification of local structure. Symmetry-breaking effects are also evident with temperature. We find Ni$_3$V$_2$O$_8$ to be an intermediate gap, local moment band insulator. This electronic structure is particularly favorable for magneto-dielectric couplings, because the material is not subject to the spin charge separation characteristic of strongly correlated large gap Mott insulators, while at the same time remaining a magnetic insulator independent of the particular spin order and temperature.
284 - Z. Y. Zhao , Q. J. Li , X. G. Liu 2019
Kagom{e}-staircase compound Ni$_3$V$_2$O$_8$ is an attractive multiferroic material exhibiting rich phase diagrams. However, the magnetic properties and magnetic transitions have been studied only above 1.3 K. In this work, we study the thermal condu ctivity ($kappa$) of Ni$_3$V$_2$O$_8$ single crystals at low temperatures down to 0.3 K and in magnetic fields up to 14 T. In zero field, the magnetic transitions from the low-temperature incommensurate (LTI) phase to the commensurate phase (C) and then to a second commensurate phase (C) yield anomalies in $kappa(T)$ curves at $Trm_{LC}$ = 3.7 K and $Trm_{CC}$ = 2.0 K, respectively, which indicates a significant phonon scattering by the critical spin fluctuations. When the field is applied along the $a$ axis, the field dependence of $kappa$ displays four anomalies associated with different magnetic transitions and reveals an undetected magnetic state at subKelvin temperatures. In addition, the $kappa(B)$ curves are found to depend not only on the history but also on the magnitude of applying field. When the field is applied along the $b$ axis, a high-field phase locating above the LTI and high-temperature incommensurate (HTI) phases is revealed.
331 - A. M. Hallas , W. Jin , J. Gaudet 2020
We present a comprehensive experimental and theoretical study of the pyrochlore Tb$_2$Ge$_2$O$_7$, an exemplary realization of a material whose properties are dominated by competition between magnetic dipolar and electric quadrupolar correlations. Th e dipolar and quadrupolar correlations evolve over three distinct regimes that we characterize via heat capacity, elastic and inelastic neutron scattering. In the first regime, above $T^*=1.1$ K, significant quadrupolar correlations lead to an intense inelastic mode that cannot be accounted for within a scenario with solely magnetic dipole-dipole correlations. The onset of extended dipole correlations occurs in the intermediate regime, between $T^*=1.1$ K and $T_c = 0.25$ K, with the formation of a collective paramagnetic state characterized by extended ferromagnetic canted spin ice domains. Here, long-range order is impeded not only by the usual frustration operating in classical spin ice systems, but also by a competition between dipolar and quadrupolar correlations. Finally, in the lowest temperature regime, below $T_c=0.25$ K, there is an abrupt and significant increase in the dipole ordered moment. The majority of the ordered moment remains tied up in the ferromagnetic spin ice-like state, but an additional $mathbf{k}=(0,0,1)$ antiferromagnetic order parameter also develops. Simultaneously, the spectral weight of the inelastic mode, which is a proxy for the quadrupolar correlations, is observed to drop, indicating that dipole order ultimately wins out. Tb$_2$Ge$_2$O$_7$ is therefore a remarkable platform to study intertwined dipolar and quadrupolar correlations in a magnetically frustrated system and provides important insights into the physics of the whole family of terbium pyrochlores.
The local structure of V$_{2}$O$_{3}$, an archetypal strongly correlated electron system that displays a metal-insulator transition around 160 K, has been investigated via pair distribution function (PDF) analysis of neutron and x-ray total scatterin g data. The rhombohedral-to-monoclinic structural phase transition manifests as an abrupt change on all length scales in the observed PDF. No monoclinic distortions of the local structure are found above the transition, although coexisting regions of phase-separated rhombohedral and monoclinic symmetry are observed between 150 K and 160 K. This lack of structural fluctuations above the transition contrasts with the known presence of magnetic fluctuations in the high-temperature state, suggesting that the lattice degree of freedom plays a secondary role behind the spin degree of freedom in the transition mechanism.
The silver ruthenium oxide AgRuO$_3$ consists of honeycomb [Ru$_2^{5+}$O$_6^{2-}$] layers, and can be considered an analogue of SrRu$_2$O$_6$ with a different intercalation stage. We present measurements of magnetic susceptibility and specific heat o n AgRuO$_3$ single crystals which reveal a sharp antiferromagnetic transition at 342(3)K. The electrical transport in single crystals of AgRuO$_3$ is determined by a combination of activated conduction over an intrinsic semiconducting gap of $approx$ 100 meV and carriers trapped and thermally released from defects. From powder neutron diffraction data a Neel-type antiferromagnetic structure with the Ru moments along the $c$ axis is derived. Raman and muon spin rotation spectroscopy measurements on AgRuO$_3$ powder samples indicate a further weak phase transition or a crossover in the temperature range 125-200 K. The transition does not show up in magnetic susceptibility and its origin is argued to be related to defects but cannot be fully clarified. The experimental findings are complemented by DFT-based electronic structure calculations. It is found that the magnetism in AgRuO$_3$ is similar to that of SrRu$_2$O$_6$, however with stronger intralayer and weaker interlayer magnetic exchange interactions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا