ترغب بنشر مسار تعليمي؟ اضغط هنا

Realistic modeling of wind and supernovae shocks in star clusters: addressing ${rm ^{22}Ne/^{20}Ne}$ and other problems in Galactic cosmic rays

62   0   0.0 ( 0 )
 نشر من قبل Siddhartha Gupta
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Cosmic ray (CR) sources leave signatures in the isotopic abundances of CRs. Current models of Galactic CRs that consider supernovae (SNe) shocks as the main sites of particle acceleration cannot satisfactorily explain the higher ${rm ^{22}Ne/^{20}Ne}$ ratio in CRs compared to the interstellar medium. Although stellar winds from massive stars have been invoked, their contribution relative to SNe ejecta has been taken as a free parameter. Here we present a theoretical calculation of the relative contributions of wind termination shocks (WTSs) and SNe shocks in superbubbles, based on the hydrodynamics of winds in clusters, the standard stellar mass function, and stellar evolution theory. We find that the contribution of WTSs towards the total CR production is at least $25%$, which rises to $gtrsim 50%$ for young ($lesssim 10$ Myr) clusters, and explains the observed $^{22}{rm Ne}/^{20} {rm Ne}$ ratio. We argue that since the progenitors of apparently isolated supernovae remnants (SNRs) are born in massive star clusters, both WTS and SNe shocks can be integrated into a combined scenario of CRs being accelerated in massive clusters. This scenario is consistent with the observed ratio of SNRs to $gamma$-ray bright ($L_gamma gtrsim 10^{35}$ erg s$^{-1}$) star clusters, as predicted by star cluster mass function. Moreover, WTSs can accelerate CRs to PeV energies, and solve other longstanding problems of the standard supernova paradigm of CR acceleration.



قيم البحث

اقرأ أيضاً

Background: Neutron-induced reactions are a significant concern for experiments that require extremely low levels of radioactive backgrounds. Measurements of gamma-ray production cross sections over a wide energy range will help to predict and identi fy neutron backgrounds in these experiments. Purpose: Determine partial gamma-ray production cross sections for neutron-induced reactions in natural neon. Methods: The broad-spectrum neutron beam at the Los Alamos Neutron Science Center (LANSCE) was used for the measurement. Gamma rays from neutron-induced reactions were detected using the GErmanium Array for Neutron Induced Excitations (GEANIE). Results: Partial gamma-ray cross sections were measured for the first excited-state transitions in Ne-20 and Ne-22. The measured cross sections were compared to the TALYS and CoH3 nuclear reaction codes. Conclusions: These are the first experimental data for (n,n) reactions in neon. In addition to providing data to aid in the prediction and identification of neutron backgrounds in low-background experiments, these new measurements will help refine cross-section predictions in a mass region where models are not well constrained.
We discuss a specific population of galactic PeVatrons which may be the main source of the galactic cosmic-ray (CR) component well above PeV energies. Supernovae in compact clusters of massive stars are proposed as powerful sources of CRs, neutrinos, and gamma-ray emission. Numerical simulations of non-linear Fermi acceleration at converging shock flows have revealed that these accelerators can provide very hard spectra of protons up to $10^{16}-10^{17}$ eV which is well above the knee in the all-particle CR spectrum at about $3times10^{15}$ eV. We suggest that known supernova remnants interacting with stellar winds in the compact clusters of young massive stars Westerlund I and Cl*1806-20 can be associated with the sources of the TeV gamma-ray emission detected by H.E.S.S. and may be responsible for a fraction of the high-energy neutrinos detected with the IceCube observatory. A recent CR composition measurement with the LOFAR array has revealed a light-mass component possibly dominating the all-particle spectrum at energies around $10^{17}$ eV. Such a strong light component (mainly protons and helium) may require specific galactic CR sources such as supernovae interacting with compact clusters of massive stars in addition to isolated supernova remnants.
The structure of high-lying states in $^{22}$Ne has been studied using the $^{14}$C($^{12}$C,$alpha$)$^{22}$Ne reaction at E($^{12}$C)= 44 MeV. The spins were determined by measuring double ($alpha$,$alpha$) angular correlations. Selective population of the 9$^-$ and 11$^-$ states at E$_x$=20.1 and 20.7 MeV, respectively, identifies those states as the 9$^-$ and 11$^-$ members of the first $K^{pi}$ = 0$^-$ band, whose lower members were investigated by a method using inverse kinematics and a thick gas target. The spin and parity of four other new levels were determined to be 9$^-$ (21.5 MeV),12$^+$ (22.1 MeV),9$^-$ (25.0 MeV) and 8$^+$ (22.9 MeV). The two levels 9$^-$ and 12$^+$ may belong to the rotational doublets.
The competing $^{22}$Ne($alpha,gamma$)$^{26}$Mg and $^{22}$Ne($alpha,n$)$^{25}$Mg reactions control the production of neutrons for the weak $s$-process in massive and AGB stars. In both systems, the ratio between the corresponding reaction rates stro ngly impacts the total neutron budget and strongly influences the final nucleosynthesis. The $^{22}$Ne($alpha,gamma$)$^{26}$Mg and $^{22}$Ne($alpha,n$)$^{25}$Mg reaction rates was re-evaluated by using newly available information on $^{26}$Mg given by various recent experimental studies. Evaluations of The evaluated $^{22}$Ne($alpha,gamma$)$^{26}$Mg reaction rate remains substantially similar to that of Longland {it et al.} but, including recent results from Texas A&M, the $^{22}$Ne($alpha,n$)$^{25}$Mg reaction rate is lower at a range of astrophysically important temperatures. Stellar models computed with NEWTON and MESA predict decreased production of the weak branch $s$-process due to the decreased efficiency of $^{22}$Ne as a neutron source. Using the new reaction rates in the MESA model results in $^{96}$Zr/$^{94}$Zr and $^{135}$Ba/$^{136}$Ba ratios in much better agreement with the measured ratios from presolar SiC grains.
The operation of Thick Gaseous Electron Multipliers (THGEM) in Ne and Ne/CH4 mixtures, features high multiplication factors at relatively low operation potentials, in both single- and double-THGEM configurations. We present some systematic data measu red with UV-photons and soft x-rays, in various Ne mixtures. It includes gain dependence on hole diameter and gas purity, photoelectron extraction efficiency from CsI photocathodes into the gas, long-term gain stability and pulse rise-time. Position resolution of a 100x100 mm^2 X-rays imaging detector is presented. Possible applications are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا