ترغب بنشر مسار تعليمي؟ اضغط هنا

Gesture Agreement Assessment Using Description Vectors

318   0   0.0 ( 0 )
 نشر من قبل Naveen Madapana
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Participatory design is a popular design technique that involves the end users in the early stages of the design process to obtain user-friendly gestural interfaces. Guessability studies followed by agreement analyses are often used to elicit and comprehend the preferences (or gestures/proposals) of the participants. Previous approaches to assess agreement, grouped the gestures into equivalence classes and ignored the integral properties that are shared between them. In this work, we represent the gestures using binary description vectors to allow them to be partially similar. In this context, we introduce a new metric referred to as soft agreement rate (SAR) to quantify the level of consensus between the participants. In addition, we performed computational experiments to study the behavior of our partial agreement formula and mathematically show that existing agreement metrics are a special case of our approach. Our methodology was evaluated through a gesture elicitation study conducted with a group of neurosurgeons. Nevertheless, our formulation can be applied to any other user-elicitation study. Results show that the level of agreement obtained by SAR metric is 2.64 times higher than the existing metrics. In addition to the mostly agreed gesture, SAR formulation also provides the mostly agreed descriptors which can potentially help the designers to come up with a final gesture set.



قيم البحث

اقرأ أيضاً

Hand Gesture Recognition (HGR) based on inertial data has grown considerably in recent years, with the state-of-the-art approaches utilizing a single handheld sensor and a vocabulary comprised of simple gestures. In this work we explore the benefit s of using multiple inertial sensors. Using WaveGlove, a custom hardware prototype in the form of a glove with five inertial sensors, we acquire two datasets consisting of over $11000$ samples. To make them comparable with prior work, they are normalized along with $9$ other publicly available datasets, and subsequently used to evaluate a range of Machine Learning approaches for gesture recognition, including a newly proposed Transformer-based architecture. Our results show that even complex gestures involving different fingers can be recognized with high accuracy. An ablation study performed on the acquired datasets demonstrates the importance of multiple sensors, with an increase in performance when using up to three sensors and no significant improvements beyond that.
Text-to-speech and co-speech gesture synthesis have until now been treated as separate areas by two different research communities, and applications merely stack the two technologies using a simple system-level pipeline. This can lead to modeling ine fficiencies and may introduce inconsistencies that limit the achievable naturalness. We propose to instead synthesize the two modalities in a single model, a new problem we call integrated speech and gesture synthesis (ISG). We also propose a set of models modified from state-of-the-art neural speech-synthesis engines to achieve this goal. We evaluate the models in three carefully-designed user studies, two of which evaluate the synthesized speech and gesture in isolation, plus a combined study that evaluates the models like they will be used in real-world applications -- speech and gesture presented together. The results show that participants rate one of the proposed integrated synthesis models as being as good as the state-of-the-art pipeline system we compare against, in all three tests. The model is able to achieve this with faster synthesis time and greatly reduced parameter count compared to the pipeline system, illustrating some of the potential benefits of treating speech and gesture synthesis together as a single, unified problem. Videos and code are available on our project page at https://swatsw.github.io/isg_icmi21/
Head gesture is a natural means of face-to-face communication between people but the recognition of head gestures in the context of virtual reality and use of head gesture as an interface for interacting with virtual avatars and virtual environments have been rarely investigated. In the current study, we present an approach for real-time head gesture recognition on head-mounted displays using Cascaded Hidden Markov Models. We conducted two experiments to evaluate our proposed approach. In experiment 1, we trained the Cascaded Hidden Markov Models and assessed the offline classification performance using collected head motion data. In experiment 2, we characterized the real-time performance of the approach by estimating the latency to recognize a head gesture with recorded real-time classification data. Our results show that the proposed approach is effective in recognizing head gestures. The method can be integrated into a virtual reality system as a head gesture interface for interacting with virtual worlds.
Users intentions may be expressed through spontaneous gesturing, which have been seen only a few times or never before. Recognizing such gestures involves one shot gesture learning. While most research has focused on the recognition of the gestures i tself, recently new approaches were proposed to deal with gesture perception and production as part of the same problem. The framework presented in this work focuses on learning the process that leads to gesture generation, rather than mining the gestures associated features. This is achieved using kinematic, cognitive and biomechanic characteristics of human interaction. These factors enable the artificial production of realistic gesture samples originated from a single observation. The generated samples are then used as training sets for different state-of-the-art classifiers. Performance is obtained first, by observing the machines gesture recognition percentages. Then, performance is computed by the human recognition from gestures performed by robots. Based on these two scenarios, a composite new metric of coherency is proposed relating to the amount of agreement between these two conditions. Experimental results provide an average recognition performance of 89.2% for the trained classifiers and 92.5% for the participants. Coherency in recognition was determined at 93.6%. While this new metric is not directly comparable to raw accuracy or other pure performance-based standard metrics, it provides a quantifier for validating how realistic the machine generated samples are and how accurate the resulting mimicry is.
Human-computer interaction (HCI) is crucial for the safety of lives as autonomous vehicles (AVs) become commonplace. Yet, little effort has been put toward ensuring that AVs understand humans on the road. In this paper, we present GLADAS, a simulator -based research platform designed to teach AVs to understand pedestrian hand gestures. GLADAS supports the training, testing, and validation of deep learning-based self-driving car gesture recognition systems. We focus on gestures as they are a primordial (i.e, natural and common) way to interact with cars. To the best of our knowledge, GLADAS is the first system of its kind designed to provide an infrastructure for further research into human-AV interaction. We also develop a hand gesture recognition algorithm for self-driving cars, using GLADAS to evaluate its performance. Our results show that an AV understands human gestures 85.91% of the time, reinforcing the need for further research into human-AV interaction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا