ﻻ يوجد ملخص باللغة العربية
We study the phonon dynamics in lattices of optomechanical resonators where the mutually coupled photonic modes are coherently driven and the mechanical resonators are uncoupled and connected to independent thermal baths. We present a general procedure to obtain the effective Lindblad dynamics of the phononic modes for an arbitrary lattice geometry, where the light modes play the role of an effective reservoir that mediates the phonon nonequilibrium dynamics. We show how to stabilize stationary states exhibiting directional heat currents over arbitrary distance, despite the absence of thermal gradient and of direct coupling between the mechanical resonators.
We explore whether localized surface plasmon polariton modes can transfer heat between molecules placed in the hot spot of a nanoplasmonic cavity through optomechanical interaction with the molecular vibrations. We demonstrate that external driving o
The successes of superconducting quantum circuits at local manipulation of quantum information and photonics technology at long-distance transmission of the same have spurred interest in the development of quantum transducers for efficient, low-noise
Vibrating nano- and micromechanical resonators have been the subject of research aiming at ultrasensitive mass sensors for mass spectrometry, chemical analysis and biomedical diagnosis. Unfortunately, their merits diminish dramatically in liquids due
We propose to synthesize arbitrary nonclassical motional states in optomechanical systems by using sideband excitations and photon blockade. We first demonstrate that the Hamiltonian of the optomechanical systems can be reduced, in the strong single-
Quantum teleportation, the faithful transfer of an unknown input state onto a remote quantum system, is a key component in long distance quantum communication protocols and distributed quantum computing. At the same time, high frequency nano-optomech