ترغب بنشر مسار تعليمي؟ اضغط هنا

Symmetry-Adapted High Dimensional Neural Network Representation of Electronic Friction Tensor of Adsorbates on Metals

50   0   0.0 ( 0 )
 نشر من قبل Yaolong Zhang
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Nonadiabatic effects in chemical reaction at metal surfaces, due to excitation of electron-hole pairs, stand at the frontier of the studies of gas-surface reaction dynamics. However, the first principles description of electronic excitation remains challenging. In an efficient molecular dynamics with electronic friction (MDEF) method, the nonadiabatic couplings are effectively included in a so-called electronic friction tensor (EFT), which can be computed from first-order time-dependent perturbation theory (TDPT) in terms of density functional theory (DFT) orbitals. This second-rank tensor depends on adsorbate position and features a complicated transformation with regard to the intrinsic symmetry operations of the system. In this work, we develop a new symmetry-adapted neural network representation of EFT, based on our recently proposed embedded atom neural network (EANN) framework. Inspired by the derivation of the nonadiabatic coupling matrix, we represent the tensorial friction by the first and second derivatives of multiple outputs of NNs with respect to atomic Cartesian coordinates. This rigorously preserves the positive semidefiniteness, directional property, and correct symmetry-equivariance of EFT. Unlike previous methods, our new approach can readily include both molecular and surface degrees of freedom, regardless of the type of surface. Tests on the H2+Ag(111) system show that this approach yields an accurate, efficient, and continuous representation of EFT, making it possible to perform large scale TDPT-based MDEF simulations to study both adiabatic and nonadiabatic energy dissipation in a unified framework.



قيم البحث

اقرأ أيضاً

Machine learning has revolutionized the high-dimensional representations for molecular properties such as potential energy. However, there are scarce machine learning models targeting tensorial properties, which are rotationally covariant. Here, we p ropose tensorial neural network (NN) models to learn both tensorial response and transition properties, in which atomic coordinate vectors are multiplied with scalar NN outputs or their derivatives to preserve the rotationally covariant symmetry. This strategy keeps structural descriptors symmetry invariant so that the resulting tensorial NN models are as efficient as their scalar counterparts. We validate the performance and universality of this approach by learning response properties of water oligomers and liquid water, and transition dipole moment of a model structural unit of proteins. Machine learned tensorial models have enabled efficient simulations of vibrational spectra of liquid water and ultraviolet spectra of realistic proteins, promising feasible and accurate spectroscopic simulations for biomolecules and materials.
141 - Chang Nie , Huan Wang , Zhihui Lai 2021
This work studies the problem of high-dimensional data (referred to tensors) completion from partially observed samplings. We consider that a tensor is a superposition of multiple low-rank components. In particular, each component can be represented as multilinear connections over several latent factors and naturally mapped to a specific tensor network (TN) topology. In this paper, we propose a fundamental tensor decomposition (TD) framework: Multi-Tensor Network Representation (MTNR), which can be regarded as a linear combination of a range of TD models, e.g., CANDECOMP/PARAFAC (CP) decomposition, Tensor Train (TT), and Tensor Ring (TR). Specifically, MTNR represents a high-order tensor as the addition of multiple TN models, and the topology of each TN is automatically generated instead of manually pre-designed. For the optimization phase, an adaptive topology learning (ATL) algorithm is presented to obtain latent factors of each TN based on a rank incremental strategy and a projection error measurement strategy. In addition, we theoretically establish the fundamental multilinear operations for the tensors with TN representation, and reveal the structural transformation of MTNR to a single TN. Finally, MTNR is applied to a typical task, tensor completion, and two effective algorithms are proposed for the exact recovery of incomplete data based on the Alternating Least Squares (ALS) scheme and Alternating Direction Method of Multiplier (ADMM) framework. Extensive numerical experiments on synthetic data and real-world datasets demonstrate the effectiveness of MTNR compared with the start-of-the-art methods.
We assess the accuracy of vibrational damping rates of diatomic adsorbates on metal surfaces as calculated within the local-density friction approximation (LDFA). An atoms-in-molecules (AIM) type charge partitioning scheme accounts for intra-molecula r contributions and overcomes the systematic underestimation of the non-adiabatic losses obtained within the prevalent independent atom approximation. The quantitative agreement obtained with theoretical and experimental benchmark data suggests the LDFA-AIM as an efficient and reliable approach to account for electronic dissipation in ab initio molecular dynamics simulations of surface chemical reactions.
Vibrational spectra can be computed without storing full-dimensional vectors by using low-rank sum-of-products (SOP) basis functions. We introduce symmetry constraints in the SOP basis functions to make it possible to separately calculate states in d ifferent symmetry subgroups. This is done using a power method to compute eigenvalues and an alternating least squares method to optimize basis functions. Owing to the fact that the power method favours the convergence of the lowest states, one must be careful not to exclude basis functions of some symmetries. Exploiting symmetry facilitates making assignments and improves the accuracy. The method is applied to the acetonitrile molecule.
Despite their rich information content, electronic structure data amassed at high volumes in ab initio molecular dynamics simulations are generally under-utilized. We introduce a transferable high-fidelity neural network representation of such data i n the form of tight-binding Hamiltonians for crystalline materials. This predictive representation of ab initio electronic structure, combined with machine-learning boosted molecular dynamics, enables efficient and accurate electronic evolution and sampling. When applied to a one-dimension charge-density wave material, carbyne, we are able to compute the spectral function and optical conductivity in the canonical ensemble. The spectral functions evaluated during soliton-antisoliton pair annihilation process reveal significant renormalization of low-energy edge modes due to retarded electron-lattice coupling beyond the Born-Oppenheimer limit. The availability of an efficient and reusable surrogate model for the electronic structure dynamical system will enable calculating many interesting physical properties, paving way to previously inaccessible or challenging avenues in materials modeling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا