ﻻ يوجد ملخص باللغة العربية
We present the design and implementation of a low-latency, low-overhead, and highly available resilient disaggregated cluster memory. Our proposed framework can access erasure-coded remote memory within a single-digit {mu}s read/write latency, significantly improving the performance-efficiency tradeoff over the state-of-the-art - it performs similar to in-memory replication with 1.6x lower memory overhead. We also propose a novel coding group placement algorithm for erasure-coded data, that provides load balancing while reducing the probability of data loss under correlated failures by an order of magnitude.
Principal component analysis (PCA) is not only a fundamental dimension reduction method, but is also a widely used network anomaly detection technique. Traditionally, PCA is performed in a centralized manner, which has poor scalability for large dist
Memory disaggregation provides efficient memory utilization across network-connected systems. It allows a node to use part of memory in remote nodes in the same cluster. Recent studies have improved RDMA-based memory disaggregation systems, supportin
Although a data processing system often works as a batch processing system, many enterprises deploy such a system as a service, which we call the service-oriented data processing system. It has been shown that in-memory data processing systems suffer
System noise can negatively impact the performance of HPC systems, and the interconnection network is one of the main factors contributing to this problem. To mitigate this effect, adaptive routing sends packets on non-minimal paths if they are less
Byte-addressable persistent memories (PM) has finally made their way into production. An important and pressing problem that follows is how to deploy them in existing datacenters. One viable approach is to attach PM as self-contained devices to the n