ﻻ يوجد ملخص باللغة العربية
We introduce a new technique to search for gravitational wave events from compact binary mergers that produce a clear signal only in a single gravitational wave detector, and marginal signals in other detectors. Such a situation can arise when the detectors in a network have different sensitivities, or when sources have unfavorable sky locations or orientations. We start with a short list of loud single-detector triggers from regions of parameter space that are empirically unaffected by glitches (after applying signal-quality vetoes). For each of these triggers, we compute evidence for astrophysical origin from the rest of the detector network by coherently combining the likelihoods from all detectors and marginalizing over extrinsic geometric parameters. We report the discovery of two new binary black hole (BBH) mergers in the second observing run of Advanced LIGO and Virgo (O2), in addition to the ones that were reported in Abbott et al. (2018) and Venumadhav et al. (2019). We estimate that the two events have false alarm rates of one in 19 years (60 O2) and one in 11 years (36 O2). One of the events, GW170817A, has primary and secondary masses $m_1^{rm src} = 56_{-10}^{+16} , M_odot$ and $m_2^{rm src} = 40_{-11}^{+10} , M_odot$ in the source frame. The existence of GW170817A should be very informative about the theoretically predicted upper mass gap for stellar mass black holes. Its effective spin parameter is measured to be $chi_{rm eff} = 0.5 pm 0.2$, which is consistent with the tendency of the heavier detected BBH systems to have large and positive effective spin parameters. The other event, GWC170402, will be discussed thoroughly in future work.
We review the main physical processes that lead to the formation of stellar binary black holes (BBHs) and to their merger. BBHs can form from the isolated evolution of massive binary stars. The physics of core-collapse supernovae and the process of c
We study whether binary black hole template banks can be used to search for the gravitational waves emitted by general binary coalescences. To recover binary signals from noisy data, matched-filtering techniques are typically required. This is especi
We present results from a controlled numerical experiment investigating the effect of stellar density gas on the coalescence of binary black holes (BBHs) and the resulting gravitational waves (GWs). This investigation is motivated by the proposed ste
In dense stellar environments, the merger products of binary black hole mergers may undergo additional mergers. These hierarchical mergers are predicted to have higher masses than the first generation of black holes made from stars. The components of
In 2016, LIGO and Virgo announced the first observation of gravitational waves from a binary black hole merger, known as GW150914. To establish the confidence of this detection, large-scale scientific workflows were used to measure the events statist