ترغب بنشر مسار تعليمي؟ اضغط هنا

Using Speech Synthesis to Train End-to-End Spoken Language Understanding Models

259   0   0.0 ( 0 )
 نشر من قبل Loren Lugosch
 تاريخ النشر 2019
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

End-to-end models are an attractive new approach to spoken language understanding (SLU) in which the meaning of an utterance is inferred directly from the raw audio without employing the standard pipeline composed of a separately trained speech recognizer and natural language understanding module. The downside of end-to-end SLU is that in-domain speech data must be recorded to train the model. In this paper, we propose a strategy for overcoming this requirement in which speech synthesis is used to generate a large synthetic training dataset from several artificial speakers. Experiments on two open-source SLU datasets confirm the effectiveness of our approach, both as a sole source of training data and as a form of data augmentation.

قيم البحث

اقرأ أيضاً

Whereas conventional spoken language understanding (SLU) systems map speech to text, and then text to intent, end-to-end SLU systems map speech directly to intent through a single trainable model. Achieving high accuracy with these end-to-end models without a large amount of training data is difficult. We propose a method to reduce the data requirements of end-to-end SLU in which the model is first pre-trained to predict words and phonemes, thus learning good features for SLU. We introduce a new SLU dataset, Fluent Speech Commands, and show that our method improves performance both when the full dataset is used for training and when only a small subset is used. We also describe preliminary experiments to gauge the models ability to generalize to new phrases not heard during training.
246 - Yao Qian , Ximo Bian , Yu Shi 2021
End-to-end (E2E) spoken language understanding (SLU) can infer semantics directly from speech signal without cascading an automatic speech recognizer (ASR) with a natural language understanding (NLU) module. However, paired utterance recordings and c orresponding semantics may not always be available or sufficient to train an E2E SLU model in a real production environment. In this paper, we propose to unify a well-optimized E2E ASR encoder (speech) and a pre-trained language model encoder (language) into a transformer decoder. The unified speech-language pre-trained model (SLP) is continually enhanced on limited labeled data from a target domain by using a conditional masked language model (MLM) objective, and thus can effectively generate a sequence of intent, slot type, and slot value for given input speech in the inference. The experimental results on two public corpora show that our approach to E2E SLU is superior to the conventional cascaded method. It also outperforms the present state-of-the-art approaches to E2E SLU with much less paired data.
Spoken language understanding (SLU) refers to the process of inferring the semantic information from audio signals. While the neural transformers consistently deliver the best performance among the state-of-the-art neural architectures in field of na tural language processing (NLP), their merits in a closely related field, i.e., spoken language understanding (SLU) have not beed investigated. In this paper, we introduce an end-to-end neural transformer-based SLU model that can predict the variable-length domain, intent, and slots vectors embedded in an audio signal with no intermediate token prediction architecture. This new architecture leverages the self-attention mechanism by which the audio signal is transformed to various sub-subspaces allowing to extract the semantic context implied by an utterance. Our end-to-end transformer SLU predicts the domains, intents and slots in the Fluent Speech Commands dataset with accuracy equal to 98.1 %, 99.6 %, and 99.6 %, respectively and outperforms the SLU models that leverage a combination of recurrent and convolutional neural networks by 1.4 % while the size of our model is 25% smaller than that of these architectures. Additionally, due to independent sub-space projections in the self-attention layer, the model is highly parallelizable which makes it a good candidate for on-device SLU.
End-to-end spoken language understanding (SLU) models are a class of model architectures that predict semantics directly from speech. Because of their input and output types, we refer to them as speech-to-interpretation (STI) models. Previous works h ave successfully applied STI models to targeted use cases, such as recognizing home automation commands, however no study has yet addressed how these models generalize to broader use cases. In this work, we analyze the relationship between the performance of STI models and the difficulty of the use case to which they are applied. We introduce empirical measures of dataset semantic complexity to quantify the difficulty of the SLU tasks. We show that near-perfect performance metrics for STI models reported in the literature were obtained with datasets that have low semantic complexity values. We perform experiments where we vary the semantic complexity of a large, proprietary dataset and show that STI model performance correlates with our semantic complexity measures, such that performance increases as complexity values decrease. Our results show that it is important to contextualize an STI models performance with the complexity values of its training dataset to reveal the scope of its applicability.
End-to-end (E2E) spoken language understanding (SLU) systems can infer the semantics of a spoken utterance directly from an audio signal. However, training an E2E system remains a challenge, largely due to the scarcity of paired audio-semantics data. In this paper, we treat an E2E system as a multi-modal model, with audio and text functioning as its two modalities, and use a cross-modal latent space (CMLS) architecture, where a shared latent space is learned between the `acoustic and `text embeddings. We propose using different multi-modal losses to explicitly guide the acoustic embeddings to be closer to the text embeddings, obtained from a semantically powerful pre-trained BERT model. We train the CMLS model on two publicly available E2E datasets, across different cross-modal losses and show that our proposed triplet loss function achieves the best performance. It achieves a relative improvement of 1.4% and 4% respectively over an E2E model without a cross-modal space and a relative improvement of 0.7% and 1% over a previously published CMLS model using $L_2$ loss. The gains are higher for a smaller, more complicated E2E dataset, demonstrating the efficacy of using an efficient cross-modal loss function, especially when there is limited E2E training data available.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا