ﻻ يوجد ملخص باللغة العربية
We give sufficient conditions for compactness of localization operators on modulation spaces $textbf{M}^{p,q}_{m_{lambda}}( mathbb{R}^{d})$ of $omega$-tempered distributions whose short-time Fourier transform is in the weighted mixed space $L^{p,q}_{m_lambda}$ for $m_lambda(x)=e^{lambdaomega(x)}$.
In this paper, we consider the trace theorem for modulation spaces, alpha modulation spaces and Besov spaces. For the modulation space, we obtain the sharp results.
This paper is devoted to give several characterizations on a more general level for the boundedness of $tau$-Wigner distributions acting from weighted modulation spaces to weighted modulation and Wiener amalgam spaces. As applications, sharp exponent
We study topologizability and power boundedness of weigh-ted composition operators on (certain subspaces of) $mathscr{D}(X)$ for an open subset $X$ of $mathbb{R}^d$. For the former property we derive a characterization in terms of the symbol and the
We investigate (uniform) mean ergodicity of (weighted) composition operators on the space of smooth functions and the space of distributions, respectively, both over an open subset of the real line. Among other things, we prove that a composition ope
Given two systems $P=(P_j(D))_{j=1}^N$ and $Q=(Q_j(D))_{j=1}^M$ of linear partial differential operators with constant coefficients, we consider the spaces ${mathcal E}_omega^P$ and ${mathcal E}_omega^Q$ of $omega$-ultradifferentiable functions with