ترغب بنشر مسار تعليمي؟ اضغط هنا

Demonstration of critical coupling in an active III-nitride microdisk photonic circuit on silicon

64   0   0.0 ( 0 )
 نشر من قبل Farsane Tabataba-Vakili
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

On-chip microlaser sources in the blue constitute an important building block for complex integrated photonic circuits on silicon. We have developed photonic circuits operating in the blue spectral range based on microdisks and bus waveguides in III-nitride on silicon. We report on the interplay between microdisk-waveguide coupling and its optical properties. We observe critical coupling and phase matching, i.e. the most efficient energy transfer scheme, for very short gap sizes and thin waveguides (g = 45 nm and w = 170 nm) in the spontaneous emission regime. Whispering gallery mode lasing is demonstrated for a wide range of parameters with a strong dependence of the threshold on the loaded quality factor. We show the dependence and high sensitivity of the output signal on the coupling. Lastly, we observe the impact of processing on the tuning of mode resonances due to the very short coupling distances. Such small footprint on-chip integrated microlasers providing maximum energy transfer into a photonic circuit have important potential applications for visible-light communication and lab-on-chip bio-sensors.

قيم البحث

اقرأ أيضاً

Ultraviolet microdisk lasers are integrated monolithically into photonic circuits using a III-nitride on silicon platform with gallium nitride (GaN) as the main waveguiding layer. The photonic circuits consist of a microdisk and a pulley waveguide te rminated by out-coupling gratings. We measure quality factors up to 3500 under continuous-wave excitation. Lasing is observed from 374 nm to 399 nm under pulsed excitation, achieving low threshold energies of $0.14 ~text{mJ/cm}^2$ per pulse (threshold peak powers of $35 ~text{kW/cm}^2$). A large peak to background dynamic of around 200 is observed at the out-coupling grating for small gaps of 50 nm between the disk and waveguide. These devices operate at the limit of what can be achieved with GaN in terms of operation wavelength.
We demonstrate an ultra-compact waveguide taper in Silicon Nitride platform. The proposed taper provides a coupling-efficiency of 95% at a length of 19.5 um in comparison to the standard linear taper of length 50 um that connects a 10 um wide wavegui de to a 1 um wide photonic wire. The taper has a spectral response > 75% spanning over 800 nm and resilience to fabrication variations; >200 nm change in taper and end waveguide width varies transmission by <5%. We experimentally demonstrate taper insertion loss of <0.1 dB/transition for a taper as short as 19.5 um, and reduces the footprint of the photonic device by 50.8% compared to the standard adiabatic taper. To the best of our knowledge, the proposed taper is the shortest waveguide taper ever reported in Silicon Nitride.
Low-threshold lasing under pulsed optical pumping is demonstrated at room temperature for III-nitride microdisks with InGaN/GaN quantum wells on Si in the blue spectral range. Thresholds in the range of 18 kW/cm2 have been achieved along with narrow linewidths of 0.07 nm and a large peak to background dynamic of 300. We compare this threshold range with the one that can be calculated using a rate equation model. We show that thresholds in the few kW/cm2 range constitute the best that can be achieved with III-nitride quantum wells at room temperature. The sensitivity of lasing on the fabrication process is also discussed.
Low-loss photonic integrated circuits (PIC) and microresonators have enabled novel applications ranging from narrow-linewidth lasers, microwave photonics, to chip-scale optical frequency combs and quantum frequency conversion. To translate these resu lts into a widespread technology, attaining ultralow optical losses with established foundry manufacturing is critical. Recent advances in fabrication of integrated Si3N4 photonics have shown that ultralow-loss, dispersion-engineered microresonators can be attained at die-level throughput. For emerging nonlinear applications such as integrated travelling-wave parametric amplifiers and mode-locked lasers, PICs of length scales of up to a meter are required, placing stringent demands on yield and performance that have not been met with current fabrication techniques. Here we overcome these challenges and demonstrate a fabrication technology which meets all these requirements on wafer-level yield, performance and length scale. Photonic microresonators with a mean Q factor exceeding 30 million, corresponding to a linear propagation loss of 1.0 dB/m, are obtained over full 4-inch wafers, as determined from a statistical analysis of tens of thousands of optical resonances and cavity ringdown with 19 ns photon storage time. The process operates over large areas with high yield, enabling 1-meter-long spiral waveguides with 2.4 dB/m loss in dies of only 5x5 mm size. Using a modulation response measurement self-calibrated via the Kerr nonlinearity, we reveal that, strikingly, the intrinsic absorption-limited Q factor of our Si3N4 microresonators exceeds a billion. Transferring the present Si3N4 photonics technology to standard commercial foundries, and merging it with silicon photonics using heterogeneous integration technology, will significantly expand the scope of todays integrated photonics and seed new applications.
III-nitride-on-silicon L3 photonic crystal cavities with resonances down to 315 nm and quality factors (Q) up to 1085 at 337 nm have been demonstrated. The reduction of the quality factor with decreasing wavelength is investigated. Besides the quantu m well absorption below 340 nm, a noteworthy contribution is attributed to the residual absorption present in thin AlN layers grown on silicon, as measured by spectroscopic ellipsometry. This residual absorption ultimately limits the Q factor to around 2000 at 300 nm when no active layer is present.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا