ترغب بنشر مسار تعليمي؟ اضغط هنا

Electron-hole asymmetry in electrical conductivity of low-fluorinated graphene: Numerical study

106   0   0.0 ( 0 )
 نشر من قبل Dmitry Kolesnikov
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

By using the real-space Green-Kubo formalism we study numerically the electron transport properties of low-fluorinated graphene. At low temperatures the diffuse transport regime is expected to be prevalent, and we found a pronounced electron-hole asymmetry in electrical conductivity as a result of quasi-resonant scattering on the localized states. For the finite temperatures in the variable-range hopping transport regime the interpretation of numerical results leads to the appearance of local minima and maxima of the resistance near the energies of the localized states. A comparison with the experimental measurements of the resistance in graphene samples with various fluorination degrees is discussed.



قيم البحث

اقرأ أيضاً

100 - D.V.Kolesnikov 2019
Transport properties of irradiated graphene (electrical conductivity and mobility) are numerically investigated using the real-space Kubo formalism. A micrometer-sized system consisting of millions of atoms with nanopores of various sizes and concent rations is described. Electrical conductivity and mobility as a function of carrier (hole) density are calculated to provide possible comparisons with experiments.
Graphene/hexagonal boron nitride (G/$h$-BN) heterostructures offer an excellent platform for developing nanoelectronic devices and for exploring correlated states in graphene under modulation by a periodic superlattice potential. Here, we report on t ransport measurements of nearly $0^{circ}$-twisted G/$h$-BN heterostructures. The heterostructures investigated are prepared by dry transfer and thermally annealing processes and are in the low mobility regime (approximately $3000~mathrm{cm}^{2}mathrm{V}^{-1}mathrm{s}^{-1}$ at 1.9 K). The replica Dirac spectra and Hofstadter butterfly spectra are observed on the hole transport side, but not on the electron transport side, of the heterostructures. We associate the observed electron-hole asymmetry to the presences of a large difference between the opened gaps in the conduction and valence bands and a strong enhancement in the interband contribution to the conductivity on the electron transport side in the low-mobility G/$h$-BN heterostructures. We also show that the gaps opened at the central Dirac point and the hole-branch secondary Dirac point are large, suggesting the presence of strong graphene-substrate interaction and electron-electron interaction in our G/$h$-BN heterostructures. Our results provide additional helpful insight into the transport mechanism in G/$h$-BN heterostructures.
We investigate polyethylene imine and diazonium salts as stable, complementary dopants on graphene. Transport in graphene devices doped with these molecules exhibits asymmetry in electron and hole conductance. The conductance of one carrier is preser ved, while the conductance of the other carrier decreases. Simulations based on nonequilibrium Greens function formalism suggest that the origin of this asymmetry is imbalanced carrier injection from the graphene electrodes caused by misalignment of the electrode and channel neutrality points.
Electron-hole asymmetry is a fundamental property in solids that can determine the nature of quantum phase transitions and the regime of operation for devices. The observation of electron-hole asymmetry in graphene and recently in the phase diagram o f bilayer graphene has spurred interest into whether it stems from disorder or from fundamental interactions such as correlations. Here, we report an effective new way to access electron-hole asymmetry in 2D materials by directly measuring the quasiparticle self-energy in graphene/Boron Nitride field effect devices. As the chemical potential moves from the hole to the electron doped side, we see an increased strength of electronic correlations manifested by an increase in the band velocity and inverse quasiparticle lifetime. These results suggest that electronic correlations play an intrinsic role in driving electron hole asymmetry in graphene and provide a new insight for asymmetries in more strongly correlated materials.
The effect of electron-electron interaction on the low-temperature conductivity of graphene is investigated experimentally. Unlike in other two-dimensional systems, the electron-electron interaction correction in graphene is sensitive to the details of disorder. A new temperature regime of the interaction correction is observed where quantum interference is suppressed by intra-valley scattering. We determine the value of the interaction parameter, F_0 ~ -0.1, and show that its small value is due to the chiral nature of interacting electrons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا