ﻻ يوجد ملخص باللغة العربية
Simulating turbulent smoke flows is computationally intensive due to their intrinsic multiscale behavior, thus requiring relatively high resolution grids to fully capture their complexity. For iterative editing or simply faster generation of smoke flows, dynamic upsampling of an input low-resolution numerical simulation is an attractive, yet currently unattainable goal. In this paper, we propose a novel dictionary-based learning approach to the dynamic upsampling of smoke flows. For each frame of an input coarse animation, we seek a sparse representation of small, local velocity patches of the flow based on an over-complete dictionary, and use the resulting sparse coefficients to generate a high-resolution smoke animation sequence. We propose a novel dictionary-based neural network which learns both a fast evaluation of sparse patch encoding and a dictionary of corresponding coarse and fine patches from a sequence of example simulations computed with any numerical solver. Our upsampling network then injects into coarse input sequences physics-driven fine details, unlike most previous approaches that only employed fast procedural models to add high frequency to the input. We present a variety of upsampling results for smoke flows and offer comparisons to their corresponding high-resolution simulations to demonstrate the effectiveness of our approach.
We present a simple and efficient method for refining maps or correspondences by iterative upsampling in the spectral domain that can be implemented in a few lines of code. Our main observation is that high quality maps can be obtained even if the in
This paper introduces a new nonlinear dictionary learning method for histograms in the probability simplex. The method leverages optimal transport theory, in the sense that our aim is to reconstruct histograms using so-called displacement interpolati
Point cloud upsampling is vital for the quality of the mesh in three-dimensional reconstruction. Recent research on point cloud upsampling has achieved great success due to the development of deep learning. However, the existing methods regard point
For classification tasks, dictionary learning based methods have attracted lots of attention in recent years. One popular way to achieve this purpose is to introduce label information to generate a discriminative dictionary to represent samples. Howe
Modeling and rendering of dynamic scenes is challenging, as natural scenes often contain complex phenomena such as thin structures, evolving topology, translucency, scattering, occlusion, and biological motion. Mesh-based reconstruction and tracking