ﻻ يوجد ملخص باللغة العربية
Human motion prediction is a challenging and important task in many computer vision application domains. Existing work only implicitly models the spatial structure of the human skeleton. In this paper, we propose a novel approach that decomposes the prediction into individual joints by means of a structured prediction layer that explicitly models the joint dependencies. This is implemented via a hierarchy of small-sized neural networks connected analogously to the kinematic chains in the human body as well as a joint-wise decomposition in the loss function. The proposed layer is agnostic to the underlying network and can be used with existing architectures for motion modelling. Prior work typically leverages the H3.6M dataset. We show that some state-of-the-art techniques do not perform well when trained and tested on AMASS, a recently released dataset 14 times the size of H3.6M. Our experiments indicate that the proposed layer increases the performance of motion forecasting irrespective of the base network, joint-angle representation, and prediction horizon. We furthermore show that the layer also improves motion predictions qualitatively. We make code and models publicly available at https://ait.ethz.ch/projects/2019/spl.
In this paper, we propose a novel Transformer-based architecture for the task of generative modelling of 3D human motion. Previous works commonly rely on RNN-based models considering shorter forecast horizons reaching a stationary and often implausib
Human motion prediction from historical pose sequence is at the core of many applications in machine intelligence. However, in current state-of-the-art methods, the predicted future motion is confined within the same activity. One can neither generat
Hand pose estimation is difficult due to different environmental conditions, object- and self-occlusion as well as diversity in hand shape and appearance. Exhaustively covering this wide range of factors in fully annotated datasets has remained impra
Predicting future human motion plays a significant role in human-machine interactions for a variety of real-life applications. In this paper, we build a deep state-space model, DeepSSM, to predict future human motion. Specifically, we formulate the h
We propose novel dynamic multiscale graph neural networks (DMGNN) to predict 3D skeleton-based human motions. The core idea of DMGNN is to use a multiscale graph to comprehensively model the internal relations of a human body for motion feature learn