ترغب بنشر مسار تعليمي؟ اضغط هنا

Enlarging the scope of resonant di-Higgs searches: Hunting for Higgs-to-Higgs cascades in $4b$ final states at the LHC and future colliders

69   0   0.0 ( 0 )
 نشر من قبل Jose Miguel No
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We extend the coverage of resonant di-Higgs searches in the $b bar{b} b bar{b}$ final state to the process $p p to H_1 to H_2 H_2 to b bar{b} b bar{b}$, where both $H_{1,2}$ are spin-$0$ states beyond the Standard Model. Such a process constitutes a joint discovery mode for the new states $H_1$ and $H_2$. We present the first sensitivity study of this channel, using public LHC data to validate our analysis. We also provide a first estimate of the sensitivity of the search for the HL-LHC and future facilities like the HE-LHC and FCC-hh. We analyze the discovery potential of this search for several non-minimal scalar sector scenarios: an extension of the SM with two extra singlet scalar fields, the two-Higgs-doublet model and a two-Higgs doublet model plus a singlet, which captures the scalar potential features of the NMSSM. We find that this channel represents a novel, very powerful probe for extended Higgs sectors, offering complementary sensitivity to existing analyses.



قيم البحث

اقرأ أيضاً

The prospects of observing the non-resonant di-Higgs production in the Standard Model at the proposed high energy upgrade of the LHC, $viz.$ the HE-LHC$~$($sqrt{s}=27~{rm TeV}$ and $mathcal{L} = 15~{rm ab^{-1}}$) is studied. Various di-Higgs final st ates are considered based on their cleanliness and signal yields. The search for the non-resonant double Higgs production at the HE-LHC is performed in the $bbar{b}gammagamma$, $bbar{b}tau^{+}tau^{-}$, $bbar{b}WW^{*}$, $WW^{*}gammagamma$, $bbar{b}ZZ^{*}$ and $bbar{b}mu^{+}mu^{-}$ channels. The signal-background discrimination is performed through multivariate analyses using the Boosted Decision Tree Decorrelated$~$(BDTD) algorithm in the$~$TMVA framework, the XGBoost toolkit and Deep Neural Network$~$(DNN). The variation in the kinematics of Higgs pair production as a function of the self-coupling of the Higgs boson, $lambda_{h}$, is also studied. The ramifications of varying $lambda_{h}$ on the $bbar{b}gammagamma$, $bbar{b}tau^{+}tau^{-}$ and $bbar{b}WW^{*}$ search analyses optimized for the SM hypothesis is also explored.
We review the most relevant LHC searches at $sqrt{s}$ = 8 TeV looking for low mass bosons arising from exotic decay of the Standard Model Higgs and highlighting their impact on both supersymmetric and not supersymmetric Beyond the Standard Model scenarios.
132 - J. de Blas 2019
This document aims to provide an assessment of the potential of future colliding beam facilities to perform Higgs boson studies. The analysis builds on the submissions made by the proponents of future colliders to the European Strategy Update process , and takes as its point of departure the results expected at the completion of the HL-LHC program. This report presents quantitative results on many aspects of Higgs physics for future collider projects of sufficient maturity using uniform methodologies. A first version of this report was prepared for the purposes of discussion at the Open Symposium in Granada (13-16/05/2019). Comments and feedback received led to the consideration of additional run scenarios as well as a refined analysis of the impact of electroweak measurements on the Higgs coupling extraction.
100 - J.F. Gunion 1996
Doubly-charged Higgs bosons ($Delta^{--}/Delta^{++}$) appear in several extensions to the Standard Model and can be relatively light. We review the theoretical motivation for these states and present a study of the discovery reach in future runs of t he Fermilab Tevatron for pair-produced doubly-charged Higgs bosons decaying to like-sign lepton pairs. We also comment on the discovery potential at other future colliders.
We discuss a novel signature of dark matter production at the LHC resulting from the emission of an additional Higgs boson in the dark sector. The presence of such a dark Higgs boson is motivated simultaneously by the need to generate the masses of t he particles in the dark sector and the possibility to relax constraints from the dark matter relic abundance by opening up a new annihilation channel. If the dark Higgs boson decays into Standard Model states via a small mixing with the Standard Model Higgs boson, one obtains characteristic large-radius jets in association with missing transverse momentum that can be used to efficiently discriminate signal from backgrounds. We present the sensitivities achievable in LHC searches for dark Higgs bosons with already collected data and demonstrate that such searches can probe large regions of parameter space that are inaccessible to conventional mono-jet or di-jet searches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا