ﻻ يوجد ملخص باللغة العربية
Many phenomenologically successful cosmological galaxy formation simulations employ kinetic winds to model galactic outflows, a crucial ingredient in obtaining predictions that agree with various observations. Yet systematic studies of how variations in kinetic wind scalings might alter observable galaxy properties are rare. Here we employ GADGET-3 simulations to study how the baryon cycle, stellar mass function, and other galaxy and CGM predictions vary as a function of the assumed outflow speed $v_w$ and the scaling of the mass loading factor $eta$ with velocity dispersion $sigma$. We design our fiducial model to reproduce the measured wind properties at 25% of the virial radius from the Feedback In Realistic Environments (FIRE) simulations. We find that a strong dependence of $eta sim sigma^5$ in low mass haloes with $sigma < 106 mathrm{km s^{-1}}$ is required to match the faint end of the stellar mass functions at $z > 1$. The wind speed also has a major impact, with faster winds significantly reducing wind recycling and heating more halo gas. Both effects result in less stellar mass growth in massive haloes and impact high ionization absorption in halo gas. We cannot simultaneously match the stellar content at $z=2$ and $z=0$ within a single model, suggesting that an additional feedback source such as AGN might be required in massive galaxies at lower redshifts, but the amount needed depends strongly on assumptions regarding the outflow properties. We run a 50 $mathrm{Mpc/h}$, $2times576^3$ simulation with our fiducial parameters and show that it matches a range of star-forming galaxy properties at $zsim0-2$. In closing, the results from simulations of galaxy formation are much more sensitive to small changes in the feedback implementation than to the hydrodynamic technique.
We use cosmological simulations from the FIRE (Feedback In Realistic Environments) project to study the baryon cycle and galaxy mass assembly for central galaxies in the halo mass range $M_{rm halo} sim 10^{10} - 10^{13} M_{odot}$. By tracing cosmic
Initial results are presented from 3D MHD modelling of stellar-wind bubbles around O stars moving supersonically through the ISM. We describe algorithm updates that enable high-resolution 3D MHD simulations at reasonable computational cost. We apply
The impact of 2-body scattering on the innermost density profiles of dark matter haloes is well established. We use a suite of cosmological simulations and idealised numerical experiments to show that 2-body scattering is exacerbated in situations wh
We present a direct comparison of the Pan-Andromeda Archaeological Survey (PAndAS) observations of the stellar halo of M31 with the stellar halos of 6 galaxies from the Auriga simulations. We process the simulated halos through the Auriga2PAndAS pipe
Surface magnetism is believed to be the main driver of coronal heating and stellar wind acceleration. Coronae are believed to be formed by plasma confined in closed magnetic coronal loops of the stars, with winds mainly originating in open magnetic f