ترغب بنشر مسار تعليمي؟ اضغط هنا

Validation of open-source science tools and background model construction in $gamma$-ray astronomy

318   0   0.0 ( 0 )
 نشر من قبل Lars Mohrmann
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In classical analyses of $gamma$-ray data from IACTs, such as H.E.S.S., aperture photometry, or photon counting, is applied in a (typically circular) region of interest (RoI) encompassing the source. A key element in the analysis is to estimate the amount of background in the RoI due to residual cosmic ray-induced air showers in the data. Various standard background estimation techniques have been developed in the last decades, most of them rely on a measurement of the background from source-free regions within the observed field of view. However, in particular in the Galactic plane, source analysis and background estimation are hampered by the large number of, sometimes overlapping, $gamma$-ray sources and large-scale diffuse $gamma$-ray emission. For complicated fields of view, a three-dimensional (3D) likelihood analysis shows the potential to be superior to classical analysis. In this analysis technique, a spectromorphological model, consisting of one or multiple source components and a background component, is fitted to the data, resulting in a complete spectral and spatial description of the field of view. For the application to IACT data, the major challenge of such an approach is the construction of a robust background model. In this work, we apply the 3D likelihood analysis to various test data recently made public by H.E.S.S., using the open analysis frameworks ctools and Gammapy. First, we show that, when using these tools in a classical analysis approach and comparing to the proprietary H.E.S.S. analysis framework, virtually identical high-level analysis results are obtained. We then describe the construction of a generic background model from data of H.E.S.S. observations, and demonstrate that a 3D likelihood analysis using this background model yields high-level analysis results that are highly compatible with those obtained from the classical analyses. (abridged)



قيم البحث

اقرأ أيضاً

We describe a straightforward modification of frequently invoked methods for the determination of the statistical significance of a gamma-ray signal observed in a counting process. A simple criterion is proposed to decide whether a set of measurement s of the numbers of photons registered in the source and background regions is consistent with the assumption of a constant source activity. This method is particularly suitable for immediate evaluation of the stability of the observed gamma-ray signal. It is independent of the exposure estimates, reducing thus the impact of systematic inaccuracies, and properly accounts for the fluctuations in the number of detected photons. The usefulness of the method is demonstrated on several examples. We discuss intensity changes for gamma-ray emitters detected at very high energies by the current gamma-ray telescopes (e.g. 1ES 0229+200, 1ES 1959+650 and PG 1553+113). Some of the measurements are quantified to be exceptional with large statistical significances.
174 - Gerrit Spengler 2015
The influence of systematic errors on the calculation of the statistical significance of a $gamma$-ray signal with the frequently invoked Li and Ma method is investigated. A simple criterion is derived to decide whether the Li and Ma method can be ap plied in the presence of systematic errors. An alternative method is discussed for cases where systematic errors are too large for the application of the original Li and Ma method. This alternative method reduces to the Li and Ma method when systematic errors are negligible. Finally, it is shown that the consideration of systematic errors will be important in many analyses of data from the planned Cherenkov Telescope Array.
During the last two decades Gamma-Ray Astronomy has emerged as a powerful tool to study cosmic ray physics. In fact, photons are not deviated by galactic or extragalactic magnetic fields so their directions bring the information of the production sit es and are easier to detect than neutrinos. Thus the search for $gamma$ primarily address in the framework of the search of cosmic ray sources and to the investigation of the phenomena in the acceleration sites. This note is not a place for a review of ground-based gamma-ray astronomy. We will introduce the experimental techniques used to detect photons from ground in the overwhelming background of CRs and briefly describe the experiments currently in data taking or under installation.
174 - M. de Naurois , D. Mazin 2015
Following the discovery of the cosmic rays by Victor Hess in 1912, more than 70 years and numerous technological developments were needed before an unambiguous detection of the first very-high-energy gamma-ray source in 1989 was made. Since this disc overy the field on very-high-energy gamma-ray astronomy experienced a true revolution: A second, then a third generation of instruments were built, observing the atmospheric cascades from the ground, either through the atmospheric Cherenkov light they comprise, or via the direct detection of the charged particles they carry. Present arrays, 100 times more sensitive than the pioneering experiments, have detected a large number of astrophysical sources of various types, thus opening a new window on the non-thermal Universe. New, even more sensitive instruments are currently being built; these will allow us to explore further this fascinating domain. In this article we describe the detection techniques, the history of the field and the prospects for the future of ground-based very-high-energy gamma-ray astronomy.
106 - Henrike Fleischhack 2021
Recent detections of gravitational wave signals and neutrinos from gamma-ray sources have ushered in the era of multi-messenger astronomy, while highlighting the importance of gamma-ray observations for this emerging field. AMEGO-X, the All-sky Mediu m Energy Gamma-Ray Observatory eXplorer, is an MeV gamma-ray instrument that will survey the sky in the energy range from hundreds of keV to one GeV with unprecedented sensitivity. AMEGO-X will detect gamma-ray photons both via Compton interactions and pair production processes, bridging the sensitivity gap between hard X-rays and high-energy gamma rays. AMEGO-X will provide important contributions to multi-messenger science and time-domain gamma-ray astronomy, studying e.g. high-redshift blazars, which are probable sources of astrophysical neutrinos, and gamma-ray bursts. I will present an overview of the instrument and science program.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا