ﻻ يوجد ملخص باللغة العربية
PAON4 is an L-band (1250-1500 MHz) small interferometer operating in transit mode deployed at the Nanc{c}ay observatory in France, designed as a prototype instrument for Intensity Mapping. It features four 5~meter diameter dishes in a compact triangular configuration, with a total geometric collecting area of $sim75 mathrm{m^2}$, and equipped with dual polarization receivers. A total of 36 visibilities are computed from the 8 independent RF signals by the software correlator over the full 250~MHz RF band. The array operates in transit mode, with the dishes pointed toward a fixed declination, while the sky drifts across the instrument. Sky maps for each frequency channel are then reconstructed by combining the time-dependent visibilities from the different baselines observed at different declinations. This paper presents an overview of the PAON4 instrument design and goals, as a prototype for dish arrays to map the Large Scale Structure in radio, using intensity mapping of the atomic hydrogen $21~mathrm{cm}$ line. We operated PAON4 over several years and use data from observations in different periods to assess the array performance. We present preliminary analysis of a large fraction of this data and discuss crucial issues for this type of instrument, such as the calibration strategy, instrument response stability, and noise behaviour.
The Tianlai Dish Pathfinder Array is a radio interferometer designed to test techniques for 21~cm intensity mapping in the post-reionization universe as a means for measuring large-scale cosmic structure. It performs drift scans of the sky at constan
The Cherenkov Telescope Array (CTA) is the next-generation ground-based observatory for very-high-energy gamma-ray astronomy. An innovative 9.7 m aperture, dual-mirror Schwarzschild-Couder Telescope (SCT) design is a candidate design for CTA Medium-S
The Schwarzschild-Couder Telescope (SCT) is a candidate technology for a medium-sized telescope within the Cherenkov Telescope Array, the next generation ground based observatory for very high energy gamma ray astronomy. The SCT uses a novel two-mirr
We report on studies of the viability and sensitivity of the Askaryan Radio Array (ARA), a new initiative to develop a Teraton-scale ultra-high energy neutrino detector in deep, radio-transparent ice near Amundsen-Scott station at the South Pole. An
The Asteroid Terrestrial impact Last Alert System (ATLAS) system consists of two 0.5m Schmidt telescopes with cameras covering 29 square degrees at plate scale of 1.86 arcsec per pixel. Working in tandem, the telescopes routinely survey the whole sky