ﻻ يوجد ملخص باللغة العربية
We propose a principled Bayesian method for quantifying tension between correlated datasets with wide uninformative parameter priors. This is achieved by extending the Suspiciousness statistic, which is insensitive to priors. Our method uses global summary statistics, and as such it can be used as a diagnostic for internal consistency. We show how our approach can be combined with methods that use parameter space and data space to identify the existing internal discrepancies. As an example, we use it to test the internal consistency of the KiDS-450 data in 4 photometric redshift bins, and to recover controlled internal discrepancies in simulated KiDS data. We propose this as a diagnostic of internal consistency for present and future cosmological surveys, and as a tension metric for data sets that have non-negligible correlation, such as LSST and Euclid.
Modern N-body cosmological simulations contain billions ($10^9$) of dark matter particles. These simulations require hundreds to thousands of gigabytes of memory, and employ hundreds to tens of thousands of processing cores on many compute nodes. In
We present an investigation of the horizon and its effect on global 21-cm observations and analysis. We find that the horizon cannot be ignored when modeling low frequency observations. Even if the sky and antenna beam are known exactly, forward mode
We demonstrate a measure for the effective number of parameters constrained by a posterior distribution in the context of cosmology. In the same way that the mean of the Shannon information (i.e. the Kullback-Leibler divergence) provides a measure of
We present results from a data challenge posed to the radial velocity (RV) community: namely, to quantify the Bayesian evidence for n={0,1,2,3} planets in a set of synthetically generated RV datasets containing a range of planet signals. Participatin
We provide a new interpretation for the Bayes factor combination used in the Dark Energy Survey (DES) first year analysis to quantify the tension between the DES and Planck datasets. The ratio quantifies a Bayesian confidence in our ability to combin