ﻻ يوجد ملخص باللغة العربية
The interaction of standard models particles with the axionic Dark Matter field may generate oscillating nuclear electric dipole moments (EDMs), oscillating nuclear Schiff moments and oscillating nuclear magnetic quadrupole moments (MQMs) with a frequency corresponding to the axions Compton frequency. Within an atom or a molecule an oscillating EDM, Schiff moment or MQM can drive transitions between atomic or molecular states. The excitation events can be detected, for example, via subsequent fluorescence or photoionization. Here we calculate the rates of such transitions. If the nucleus has octupole deformation or quadrupole deformation then the transition rate due to Schiff moment and MQM can be up to $10^{-16}$ transition per molecule per year. In addition, an MQM-induced transition may be of M2-type, which is useful for the elimination of background noise since M2-type transitions are suppressed for photons.
According to the Schiff theorem nuclear electric dipole moment (EDM) is completely shielded in a neutral atom by electrons. This makes a static nuclear electric dipole moment (EDM) unobservable. Interaction with the axion dark matter field generates
The molecular dipole moment ($boldsymbol{mu}$) is a central quantity in chemistry. It is essential in predicting infrared and sum-frequency generation spectra, as well as induction and long-range electrostatic interactions. Furthermore, it can be ext
The $mu$eV-mass axion is one of the most promising candidates for cold dark matter, and remains to be a well-motivated solution to the CP problem of Quantum Chromodynamics (QCD) via the Peccei-Quinn mechanism. In this paper, we propose a novel method
The equations of electrodynamics are altered in the presence of a classical coherent axion dark matter background field, changing the dispersion relation for electromagnetic waves. Careful measurements of the frequency stability in sensitive atomic c
We investigate dynamics of atomic and molecular systems exposed to intense, shaped chaotic fields and a weak femtosecond laser pulse theoretically. As a prototype example, the photoionization of a hydrogen atom is considered in detail. The net photoi