ترغب بنشر مسار تعليمي؟ اضغط هنا

The Nuclear Filaments inside the Circumnuclear Disk in the Central 0.5 pc of the Galactic center

97   0   0.0 ( 0 )
 نشر من قبل Pei-Ying Hsieh
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present CS(7-6) line maps toward the central parsec of the Galactic Center (GC), conducted with the Atacama Large Millimeter/submillimeter Array (ALMA). The primary goal is to find and characterize the gas structure in the inner cavity of the circumnuclear disk (CND) in high resolution (1.3=0.05 pc). Our large field-of-view mosaic maps -- combining interferometric and single-dish data that recover extended emission - provide a first homogeneous look to resolve and link the molecular streamers in the CND with the neutral nuclear filaments newly detected within the central cavity of the CND. We find that the nuclear filaments are rotating with Keplerian velocities in a nearly face-on orbit with an inclination angle of ~10-20 degree (radius <= 0.5 pc). This is in contrast to the CND which is highly inclined at ~65-80 degree (radius ~2-5 pc). Our analysis suggests a highly warped structure from the CND to the nuclear filaments. This result may hint that the nuclear filaments and the CND were created by different external clouds passing by Sgr A*.



قيم البحث

اقرأ أيضاً

We report a new 1-pc (30) resolution CS($J=2-1$) line map of the central 30 pc of the Galactic Center (GC), made with the Nobeyama 45m telescope. We revisit our previous study of the extraplanar feature called polar arc (PA), which is a molecular clo ud located above SgrA* with a velocity gradient perpendicular to the Galactic plane. We find that the PA can be traced back to the Galactic disk. This provides clues of the launching point of the PA , roughly $6times10^{6}$ years ago. Implications of the dynamical time scale of the PA might be related to the Galactic Center Lobe (GCL) at parsec scale. Our results suggest that in the central 30 pc of the GC, the feedback from past explosions could alter the orbital path of the molecular gas down to the central tenth of parsec. In the follow-up work of our new CS($J=2-1$) map, we also find that near the systemic velocity, the molecular gas shows an extraplanar hourglass-shaped feature (HG-feature) with a size of $sim$13 pc. The latitude-velocity diagrams show that the eastern edge of the HG-feature is associated with an expanding bubble B1, $sim$7 pc away from SgrA*. The dynamical time scale of this bubble is $sim3times10^{5}$ years. This bubble is interacting with the 50 km s$^{-1}$ cloud. Part of the molecular gas from the 50 km s$^{-1}$ cloud was swept away by the bubble to $b=-0.2deg$. The western edge of the HG-feature seems to be the molecular gas entrained from the 20 km s$^{-1}$ cloud towards the north of the Galactic disk. Our results suggest a fossil explosion in the central 30 pc of the GC a few 10$^{5}$ years ago.
Within a few parsecs around the central Black Hole Sgr A*, chemistry in the dense molecular cloud material of the circumnuclear disk (CND) can be affected by many energetic phenomena such as high UV-flux from the massive central star cluster, X-rays from Sgr A*, shock waves, and an enhanced cosmic-ray flux. Recently, spectroscopic surveys with the IRAM 30 meter and the APEX 12 meter telescopes of substantial parts of the 80--500 GHz frequency range were made toward selected positions in and near the CND. These datasets contain lines from the molecules HCN, HCO$^+$, HNC, CS, SO, SiO, CN, H$_2$CO, HC$_3$N, N$_2$H$^+$, H$_3$O$^+$ and others. We conduct Large Velocity Gradient analyses to obtain column densities and total hydrogen densities, $n$, for each species in molecular clouds located in the southwest lobe of CND. The data for the above mentioned molecules indicate 10$^5,$cm$^{-3} lesssim n <10^6,$cm$^{-3}$, which shows that the CND is tidally unstable. The derived chemical composition is compared with a chemical model calculated using the UCL_CHEM code that includes gas and grain reactions, and the effects of shock waves. Models are run for varying shock velocities, cosmic-ray ionization rates, and number densities. The resulting chemical composition is fitted best to an extremely high value of cosmic-ray ionization rate $zeta sim 10^{-14},$s$^{-1}$, 3 orders of magnitude higher than the value in regular Galactic molecular clouds, if the pre-shock density is $n=10^5,$cm$^{-3}$.
124 - N. Harada , D. Riquelme , S. Viti 2015
The circumnuclear disk (CND) of the Galactic Center is exposed to many energetic phenomena coming from the supermassive black hole Sgr A* and stellar activities. These energetic activities can affect the chemical composition in the CND by the interac tion with UV-photons, cosmic-rays, X-rays, and shock waves. We aim to constrain the physical conditions present in the CND by chemical modeling of observed molecular species detected towards it. We analyzed a selected set of molecular line data taken toward a position in the southwest lobe of the CND with the IRAM 30m and APEX 12-meter telescopes and derived the column density of each molecule using a large velocity gradient (LVG) analysis. The determined chemical composition is compared with a time-dependent gas-grain chemical model based on the UCL_CHEM code that includes the effects of shock waves with varying physical parameters. Molecules such as CO, HCN, HCO$^+$, HNC, CS, SO, SiO, NO, CN, H$_2$CO, HC$_3$N, N$_2$H$^+$ and H$_3$O$^+$ are detected and their column densities are obtained. Total hydrogen densities obtained from LVG analysis range between $2 times 10^4$ and $1 times 10^6,$cm$^{-3}$ and most species indicate values around several $times 10^5,$cm$^{-3}$, which are lower than values corresponding to the Roche limit, which shows that the CND is tidally unstable. The chemical models show good agreement with the observations in cases where the density is $sim10^4,$cm$^{-3}$, the cosmic-ray ionization rate is high, $>10^{-15} ,$s$^{-1}$, or shocks with velocities $> 40,$km s$^{-1}$ have occurred. Comparison of models and observations favors a scenario where the cosmic-ray ionization rate in the CND is high, but precise effects of other factors such as shocks, density structures, UV-photons and X-rays from the Sgr A* must be examined with higher spatial resolution data.
Utilizing the Atacama Large Millimeter/submillimeter Array (ALMA), we present CS line maps in five rotational lines ($J_{rm u}=7, 5, 4, 3, 2$) toward the circumnuclear disk (CND) and streamers of the Galactic Center. Our primary goal is to resolve th e compact structures within the CND and the streamers, in order to understand the stability conditions of molecular cores in the vicinity of the supermassive black hole (SMBH) Sgr A*. Our data provide the first homogeneous high-resolution ($1.3 = 0.05$ pc) observations aiming at resolving density and temperature structures. The CS clouds have sizes of $0.05-0.2$ pc with a broad range of velocity dispersion ($sigma_{rm FWHM}=5-40$ km s$^{-1}$). The CS clouds are a mixture of warm ($T_{rm k}ge 50-500$ K, n$_{rm H_2}$=$10^{3-5}$ cm$^{-3}$) and cold gas ($T_{rm k}le 50$ K, n$_{rm H_2}$=$10^{6-8}$ cm$^{-3}$). A stability analysis based on the unmagnetized virial theorem including tidal force shows that $84^{+16}_{-37}$ % of the total gas mass is tidally stable, which accounts for the majority of gas mass. Turbulence dominates the internal energy and thereby sets the threshold densities $10-100$ times higher than the tidal limit at distance $ge 1.5$ pc to Sgr A*, and therefore, inhibits the clouds from collapsing to form stars near the SMBH. However, within the central $1.5$ pc, the tidal force overrides turbulence and the threshold densities for a gravitational collapse quickly grow to $ge 10^{8}$ cm$^{-3}$.
We characterize in detail the two ~0.3 pc long filamentary structures found within the subsonic region of Barnard 5. We use combined GBT and VLA observations of the molecular lines NH$_3$(1,1) and (2,2) at a resolution of 1800 au, as well as JCMT con tinuum observations at 850 and 450 $mu$m at a resolution of 4400 au and 3000 au, respectively. We find that both filaments are highly super-critical with a mean mass per unit length, $M/L$, of ~80 M$_odot$ pc$^{-1}$, after background subtraction, with local increases reaching values of ~150 M$_odot$ pc$^{-1}$. This would require a magnetic field strength of ~500 $mu$G to be stable against radial collapse. We extract equidistant cuts perpendicular to the spine of the filament and fit a modified Plummer profile as well as a Gaussian to each of the cuts. The filament widths (deconvolved FWHM) range between 6500-7000 au (~0.03 pc) along the filaments. This equals ~2.0 times the radius of the flat inner region. We find an anti-correlation between the central density and this flattening radius, suggestive of contraction. Further, we also find a strong correlation between the power-law exponent at large radii and the flattening radius. We note that the measurements of these three parameters fall in a plane and derive their empirical relation. Our high-resolution observations provide direct constraints of the distribution of the dense gas within super-critical filaments showing pre- and protostellar activity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا