ﻻ يوجد ملخص باللغة العربية
Computational design of more efficient rare earth/transition metal (RE-TM) permanent magnets requires accurately calculating the magnetocrystalline anisotropy (MCA) at finite temperature, since this property places an upper bound on the coercivity. Here, we present a first-principles methodology to calculate the MCA of RE-TM magnets which fully accounts for the effects of temperature on the underlying electrons. The itinerant electron TM magnetism is described within the disordered local moment picture, and the localized RE-4f magnetism is described within crystal field theory. We use our model, which is free of adjustable parameters, to calculate the MCA of the RCo$_5$ (R=Y, La-Gd) magnet family for temperatures 0--600 K. We correctly find a huge uniaxial anisotropy for SmCo$_5$ (21.3 MJm$^{-3}$ at 300 K) and two finite temperature spin reorientation transitions for NdCo$_5$. The calculations also demonstrate dramatic valency effects in CeCo$_5$ and PrCo$_5$. Our calculations provide quantitative, first-principles insight into several decades of RE-TM experimental studies.
The development of permanent magnets containing less or no rare-earth elements is linked to profound knowledge of the coercivity mechanism. Prerequisites for a promising permanent magnet material are a high spontaneous magnetization and a sufficientl
Multiscale simulation is a key research tool for the quest for new permanent magnets. Starting with first principles methods, a sequence of simulation methods can be applied to calculate the maximum possible coercive field and expected energy density
Magnetocrystalline anisotropy, the microscopic origin of permanent magnetism, is often explained in terms of ferromagnets. However, the best performing permanent magnets based on rare earths and transition metals (RE-TM) are in fact ferrimagnets, con
We present a computational study of the compound Y(Co$_{1-x-y}$Fe$_x$Cu$_y$)$_5$ for 0 $leq x,y leq 0.2$. This compound was chosen as a prototype for investigating the cell boundary phase believed to play a key role in establishing the high coercivit
As Eu and Gd are zero-orbital-momentum ($L=0$) rare-earth atoms, their crystalline intermetallic alloys illustrate the connection between electron bands and magnetic anisotropy. Here we find out-of-plane anisotropy in 2D atom-thick EuAu$_2$ by X-ray